Langevin equation involving one fractional order with three-point boundary conditions
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 12, p. 791-798.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we investigate a class of nonlinear Langevin equation involving one fractional order $\alpha\in(0, 1]$ with three-point boundary conditions. By the Banach contraction principle and Krasnoselskii's fixed point theorem, the existence and uniqueness results of solutions are obtained. Two examples are given to show the applicability of our main results.
DOI : 10.22436/jnsa.012.12.02
Classification : 26A33, 34A08, 34A12, 34B15
Keywords: Fractional Langevin equations, fixed point theorem, existence and uniqueness

Salem, Ahmed  1 ; Alzahrani, Faris  1 ; Almaghamsi, Lamya  2

1 Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
2 Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia;Department of Mathematics, University of Jeddah, 41510, Saudi Arabia
@article{JNSA_2019_12_12_a1,
     author = {Salem, Ahmed  and Alzahrani, Faris  and Almaghamsi, Lamya },
     title = {Langevin equation involving one fractional order with three-point boundary conditions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {791-798},
     publisher = {mathdoc},
     volume = {12},
     number = {12},
     year = {2019},
     doi = {10.22436/jnsa.012.12.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.12.02/}
}
TY  - JOUR
AU  - Salem, Ahmed 
AU  - Alzahrani, Faris 
AU  - Almaghamsi, Lamya 
TI  - Langevin equation involving one fractional order with three-point boundary conditions
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 791
EP  - 798
VL  - 12
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.12.02/
DO  - 10.22436/jnsa.012.12.02
LA  - en
ID  - JNSA_2019_12_12_a1
ER  - 
%0 Journal Article
%A Salem, Ahmed 
%A Alzahrani, Faris 
%A Almaghamsi, Lamya 
%T Langevin equation involving one fractional order with three-point boundary conditions
%J Journal of nonlinear sciences and its applications
%D 2019
%P 791-798
%V 12
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.12.02/
%R 10.22436/jnsa.012.12.02
%G en
%F JNSA_2019_12_12_a1
Salem, Ahmed ; Alzahrani, Faris ; Almaghamsi, Lamya . Langevin equation involving one fractional order with three-point boundary conditions. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 12, p. 791-798. doi : 10.22436/jnsa.012.12.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.12.02/

[1] Ahmad, B.; Nieto, J. J. Solvability of Nonlinear Langevin Equation Involving Two Fractional Orders with Dirichlet Boundary Conditions, Int. J. Differ. Equ., Volume 2010 (2010), pp. 1-10 | Zbl

[2] Ahmad, B.; Nieto, J.J.; Alsaedi, A.; El-Shahed, M. A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. Real World Appl., Volume 13 (2012), pp. 599-606 | DOI | Zbl

[3] Baghani, O. On fractional Langevin equation involving two fractional orders, Commun. Nonlinear Sci. Numer. Simul., Volume 42 (2017), pp. 675-681 | DOI

[4] Baghani, H. Existence and uniqueness of solutions to fractional Langevin equations involving two fractional orders, J. Fixed Point Theory Appl., Volume 20 (2018), pp. 1-7 | Zbl | DOI

[5] Chen, A.; Chen, Y. Existence of Solutions to Nonlinear Langevin Equation Involving Two Fractional Orders with Boundary Value Conditions, Bound. Value Probl., Volume 2011 (2011), pp. 1-17 | Zbl | DOI

[6] Coffey, W. T.; Kalmykov, Y. P.; Waldron, J. T. The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, World Scientific Publishing Co., River Edge, 2004 | Zbl

[7] Fazli, H.; Nieto, J. J. Fractional Langevin equation with anti-periodic boundary conditions, Chaos Solitons Fractals, Volume 114 (2018), pp. 332-337 | Zbl | DOI

[8] Gao, Z. Y.; Yu, X. L.; Wang, J. R. Nonlocal problems for Langevin-type differential equations with two fractional-order derivatives, Bound. Value Probl., Volume 2016 (2016), pp. 1-21 | Zbl | DOI

[9] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, 2006 | Zbl

[10] Krasnoselskii, M. A. Two remarks on the method of successive approximations, Uspekhi Mat. Nauk (N.S.), Volume 10 (1955), pp. 123-127

[11] Li, X. Z.; Medved', M.; Wang, J. R. Generalized Boundary Value Problems for Nonlinear Fractional Langevin Equations, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., Volume 53 (2014), pp. 85-100 | Zbl

[12] Li, B. X.; Sun, S. R.; Sun, Y. Existence of solutions for fractional Langevin equation with infinite-point boundary conditions, J. Appl. Math. Comput., Volume 53 (2017), pp. 683-692 | DOI | Zbl

[13] Linz, S. J.; Sprott, J. C. Elementary chaotic flow, Phys. Lett. A, Volume 259 (1999), pp. 240-245 | DOI | Zbl

[14] Mainradi, F.; Pironi, P. The fractional Langevin equation: Brownian motion revisited, Extracta Math., Volume 11 (1996), pp. 140-154

[15] Muensawat, T.; Ntouyas, S. K.; Tariboon, J. Systems of generalized Sturm-Liouville and Langevin fractional differential equations, Adv. Difference Equ., Volume 2017 (2017), pp. 1-15 | Zbl | DOI

[16] Podlubny, I. Fractional Differential Equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, San Diego, 1999

[17] Salem, A.; Alzahrani, F.; Almaghamsi, L. Fractional Langevin equation with nonlocal integral boundary condition, Mathematics, Volume 7 (2019), pp. 1-10 | DOI

[18] Sprott, J. C. Some simple chaotic jerk functions, Amer. J. Phys., Volume 65 (2017), pp. 537-543 | DOI

[19] Sprott, J. C. A new class of chaotic circuit, Phys. Lett. A, Volume 266 (2000), pp. 19-23 | DOI

[20] Sprott, J. C. A new chaotic Jerk circuit, IEEE Tran. Citcuit Syst. A, Volume 58 (2011), pp. 240-243 | DOI

[21] Sudsutad, W.; Tariboon, J. Nonlinear fractional integro-differential Langevin equation involving two fractional orders with three-point multi-term fractional integral boundary conditions, J. Appl. Math. Comput., Volume 43 (2013), pp. 507-522 | Zbl | DOI

[22] Yu, T.; Deng, K.; Luo, M. Existence and uniqueness of solutions of initial value problems for nonlinear Langevin equation involving two fractional orders, Commun. Nonlinear Sci. Numer. Simul., Volume 19 (2014), pp. 1661-1668 | DOI

[23] Yukunthorn, W.; Ntouyas, S. K.; Tariboon, J. Nonlinear fractional Caputo-Langevin equation with nonlocal Riemann-Liouville fractional integral conditions, Adv. Difference Equ., Volume 2014 (2014), pp. 1-18 | Zbl | DOI

[24] Zhai, C. B.; Li, P. P. Nonnegative Solutions of Initial Value Problems for Langevin Equations Involving Two Fractional Orders, Mediterr. J. Math., Volume 15 (2018), pp. 1-11 | Zbl | DOI

[25] Zhai, C. B.; Li, P. P.; Li, H. Y. Single upper-solution or lower-solution method for Langevin equations with two fractional orders, Adv. Difference Equ., Volume 2018 (2018), pp. 1-10 | Zbl | DOI

[26] Zhao, K. H.; Gong, P. Existence of positive solutions for a class of higher-order Caputo fractional differential equation, Qual. Theory Dyn. Syst., Volume 14 (2015), pp. 157-171 | Zbl | DOI

[27] Zhou, Z. F.; Qiao, Y. Solutions for a class of fractional Langevin equations with integral and anti-periodic boundary conditions, Bound. Value Probl., Volume 2018 (2018), pp. 1-10 | DOI

Cité par Sources :