Voir la notice de l'article provenant de la source International Scientific Research Publications
Blé, Gamaliel 1 ; Dela-Rosa, Miguel Angel  2 ; Loreto-Hernández, Iván  2
@article{JNSA_2019_12_12_a0, author = {Bl\'e, Gamaliel and Dela-Rosa, Miguel Angel and Loreto-Hern\'andez, Iv\'an }, title = {Stability analysis of a tritrophic model with stage structure in the prey population}, journal = {Journal of nonlinear sciences and its applications}, pages = {765-790}, publisher = {mathdoc}, volume = {12}, number = {12}, year = {2019}, doi = {10.22436/jnsa.012.12.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.12.01/} }
TY - JOUR AU - Blé, Gamaliel AU - Dela-Rosa, Miguel Angel AU - Loreto-Hernández, Iván TI - Stability analysis of a tritrophic model with stage structure in the prey population JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 765 EP - 790 VL - 12 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.12.01/ DO - 10.22436/jnsa.012.12.01 LA - en ID - JNSA_2019_12_12_a0 ER -
%0 Journal Article %A Blé, Gamaliel %A Dela-Rosa, Miguel Angel %A Loreto-Hernández, Iván %T Stability analysis of a tritrophic model with stage structure in the prey population %J Journal of nonlinear sciences and its applications %D 2019 %P 765-790 %V 12 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.12.01/ %R 10.22436/jnsa.012.12.01 %G en %F JNSA_2019_12_12_a0
Blé, Gamaliel; Dela-Rosa, Miguel Angel ; Loreto-Hernández, Iván . Stability analysis of a tritrophic model with stage structure in the prey population. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 12, p. 765-790. doi : 10.22436/jnsa.012.12.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.12.01/
[1] Age structure effects in predator-prey interactions, Theoret. Population Biology, Volume 9 (1976), pp. 15-24 | DOI | Zbl
[2] Hopf and Bautin Bifurcation in a Tritrophic Food Chain Model with Holling Functional Response Types III and IV, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 28 (2018), pp. 1-24 | DOI | Zbl
[3] A predator prey model with age structure, J. Math. Biol., Volume 14 (1982), pp. 231-250 | DOI
[4] A derivation of Holling's type I, II and III functional responses in predator prey systems, J. Theoret. Biol., Volume 327 (2013), pp. 11-22 | DOI | Zbl
[5] The effect of the prey age structure on a predator-prey system, Sci. Math. Jpn., Volume 64 (2006), pp. 267-275 | Zbl
[6] Age structure in predator-prey systems. I. A general model and a specific example, Theoret. Population Biol., Volume 21 (1982), pp. 44-56 | DOI | Zbl
[7] Elements of applied Bifurcation Theory, Springer-Verlag, New York, 2004 | DOI | Zbl
[8] Andronov-Hopf bifurcation, Scholarpedia, Volume 1 (2006), pp. 1-6
[9] A study of the numbers, biomass and year class strengths of pereh (Perca fluviatillis L) in Winderemere from 1941--1966, J. Anim. Ecol., Volume 46 (1977), pp. 281-307
[10] The periodical cicada problem. I. Population ecology, Evolution, Volume 20 (1966), pp. 133-149 | DOI
[11] The periodical cicada problem. II. Evolution, Evolution, Volume 20 (1966), pp. 466-505 | DOI
[12] The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976 | DOI | Zbl
[13] Mathematical biology. I: An introduction, Springer, New York, 2004
[14] Differential Equations and Dynamical Systems, Springer-Verlag, New York, 2001 | DOI
[15] Predator-prey model with age structure, ANZIAM J., Volume 59 (2017), pp. 155-166 | DOI | Zbl
[16] Algorithms for the Routh-Hurwitz Stability Test, Math. Comput. Modelling, Volume 13 (1990), pp. 69-77 | DOI | Zbl
[17] Functional responses with predator interference: Viable alternatives to the Holling type II model, Ecology, Volume 82 (2001), pp. 3083-3092 | DOI
[18] Hopf bifurcation for a predator-prey model with agestructure, Appl. Math. Model., Volume 40 (2016), pp. 726-737 | DOI
[19] Bifurcation structure of a chemostat model for an age-structured predator and its prey, J. Biol. Dyn., Volume 2 (2008), pp. 428-448 | DOI | Zbl
[20] Permanence and partial extinction in a delayed three-species food chain model with stage structure and time-varying coefficients, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 6177-6191 | Zbl
Cité par Sources :