$E$-optimality conditions and Wolfe $E$-duality for $E$-differentiable vector optimization problems with inequality and equality constraints
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 11, p. 745-764.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, a nonconvex vector optimization problem with both inequality and equality constraints is considered. The functions constituting it are not necessarily differentiable, but they are $E$-differentiable. The so-called $E$-Fritz John necessary optimality conditions and the so-called $E$-Karush-Kuhn-Tucker necessary optimality conditions are established for the considered $E$-differentiable multiobjective programming problems with both inequality and equality constraints. Further, the sufficient optimality conditions are derived for such nonconvex nonsmooth vector optimization problems under (generalized) $E$-convexity. The so-called vector $E$-Wolfe dual problem is defined for the considered $E$-differentiable multiobjective programming problem with both inequality and equality constraints and several dual theorems are established also under (generalized) $E$-convexity hypotheses.
DOI : 10.22436/jnsa.012.11.06
Classification : 90C26, 90C29, 90C30, 90C46, 90C47
Keywords: \(E\)-differentiable function, \(E\)-Fritz John necessary optimality conditions, \(E\)-Karush-Kuhn-Tucker necessary optimality conditions, \(E\)-Wolfe duality, \(E\)-convex function

Antczak, Tadeusz  1 ; Abdulaleem, Najeeb  2

1 Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90--238 Lodz, Poland
2 Department of Mathematics, Hadhramout University, P. O. BOX: (50511-50512), Al-Mahrah, Yemen
@article{JNSA_2019_12_11_a5,
     author = {Antczak, Tadeusz  and Abdulaleem, Najeeb },
     title = {\(E\)-optimality conditions and {Wolfe} {\(E\)-duality} for {\(E\)-differentiable} vector optimization problems with inequality and equality constraints},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {745-764},
     publisher = {mathdoc},
     volume = {12},
     number = {11},
     year = {2019},
     doi = {10.22436/jnsa.012.11.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.06/}
}
TY  - JOUR
AU  - Antczak, Tadeusz 
AU  - Abdulaleem, Najeeb 
TI  - \(E\)-optimality conditions and Wolfe \(E\)-duality for \(E\)-differentiable vector optimization problems with inequality and equality constraints
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 745
EP  - 764
VL  - 12
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.06/
DO  - 10.22436/jnsa.012.11.06
LA  - en
ID  - JNSA_2019_12_11_a5
ER  - 
%0 Journal Article
%A Antczak, Tadeusz 
%A Abdulaleem, Najeeb 
%T \(E\)-optimality conditions and Wolfe \(E\)-duality for \(E\)-differentiable vector optimization problems with inequality and equality constraints
%J Journal of nonlinear sciences and its applications
%D 2019
%P 745-764
%V 12
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.06/
%R 10.22436/jnsa.012.11.06
%G en
%F JNSA_2019_12_11_a5
Antczak, Tadeusz ; Abdulaleem, Najeeb . \(E\)-optimality conditions and Wolfe \(E\)-duality for \(E\)-differentiable vector optimization problems with inequality and equality constraints. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 11, p. 745-764. doi : 10.22436/jnsa.012.11.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.06/

[1] Aghezzaf, B.; Hachimi, M. Sufficient optimality conditions and duality in multiobjective optimization involving generalized convexity, Numer. Funct. Anal. Optim., Volume 22 (2006), pp. 775-788 | Zbl | DOI

[2] Ahmad, I. Sufficiency and duality in multiobjective programming with generalized $(F,\rho )$-convexity, J. Appl. Anal., Volume 11 (2005), pp. 19-33 | DOI

[3] Antczak, T. On $G$-invex multiobjective programming. I. Optimality, J. Global Optim., Volume 43 (2009), pp. 97-109 | DOI | Zbl

[4] Antczak, T. On $G$-invex multiobjective programming. II. Duality, J. Global Optim., Volume 43 (2009), pp. 111-140 | DOI | Zbl

[5] Antczak, T. On nonsmooth $(\Phi, \rho)$-invex multiobjective programming in finite-dimensional Euclidean spaces, J. Adv. Math. Stud., Volume 7 (2014), pp. 127-145

[6] Antczak, T. Multiobjective programming under nondifferentiable $G$--$V$--invexity, Filomat, Volume 30 (2016), pp. 2909-2923 | Zbl

[7] Antczak, T. Optimality conditions in quasidifferentiable vector optimization, J. Optim. Theory Appl., Volume 171 (2016), pp. 708-725 | Zbl | DOI

[8] Antczak, T.; Jiménez, M. A. $KT$--$G$--invexity in multiobjective programming, Int. J. Math. Comput., Volume 27 (2016), pp. 23-39

[9] Arana-Jiménez, M. Efficiency under pseudoinvexity and duality in differentiable and non-differentiable multiobjective problems, A characterization, in: Recent developments on mathematical programming and applications, Volume 2009 (2009), pp. 1-14

[10] Arana-Jiménez, M.; Garzón, G. R.; Lizana, A. R. Optimality conditions in vector optimization, Bentham Science Publishers, Oak Park, 2010

[11] Chen, X. S. Some properties of semi-$E$-convex functions, J. Math. Anal. Appl., Volume 275 (2002), pp. 251-262 | DOI | Zbl

[12] Chuong, T. D.; Kim, D. S. Optimality conditions and duality in nonsmooth multiobjective optimization problems, Ann. Oper. Res., Volume 217 (2014), pp. 117-136 | Zbl | DOI

[13] Giorgi, G.; Guerraggio, A. The notion of invexity in vector optimization: smooth and nonsmooth case, in: Generalized Convexity, Generalized Monotonicity: Recent Results, Volume 1998 (1998), pp. 389-405 | Zbl | DOI

[14] Huang, N. J.; Li, J.; Wu, S. Y. Optimality conditions for vector optimization problems, J. Optim. Theory Appl., Volume 142 (2009), pp. 323-342 | DOI

[15] Iqbal, A.; Ahmad, I.; Ali, S. Some properties of geodesic semi-$E$-convex functions, Nonlinear Anal., Volume 74 (2011), pp. 6805-6813 | Zbl | DOI

[16] Iqbal, A.; Ali, S.; Ahmad, I. On geodesic $E$-convex sets, geodesic $E$-convex functions and $E$-epigraphs, J. Optim. Theory Appl., Volume 155 (2012), pp. 239-251 | DOI | Zbl

[17] Jahn, J. Vector optimization: theory, applications and extensions, Springer-Verlag, Berlin, 2011 | Zbl | DOI

[18] Jeyakumar, V.; Mond, B. On generalised convex mathematical programming, J. Austral. Math. Soc. Ser. B, Volume 34 (1992), pp. 43-53 | DOI | Zbl

[19] Kanniappan, P. Necessary conditions for optimality of nondifferentiable convex multiobjective programming, J. Optim. Theory Appl., Volume 40 (1983), pp. 167-174 | DOI | Zbl

[20] Kaul, R. N.; Suneja, S. K.; Srivastava, M. K. Optimality criteria and duality in multiple-objective optimization involving generalized invexity, J. Optim. Theory Appl., Volume 80 (1994), pp. 465-482 | Zbl | DOI

[21] Khanh, P. Q.; Nuong, T. H. On necessary optimality conditions in vector optimization problems, J. Optim. Theory Appl., Volume 58 (1988), pp. 63-81 | Zbl | DOI

[22] Kim, D. S.; Schaible, S. Optimality and duality for invex nonsmooth multiobjective programming problems, Optimization, Volume 53 (2004), pp. 165-176 | Zbl | DOI

[23] Kuk, H.; Lee, G. M.; Kim, D. S. Nonsmooth multiobjective programs with $V$-$\rho$-invexity, Indian J. Pure Appl. Math., Volume 29 (1998), pp. 405-412 | Zbl

[24] Lee, G. M. Nonsmooth invexity in multiobjective programming, J. Inform. Optim. Sci., Volume 15 (1994), pp. 127-136 | DOI | Zbl

[25] Li, Z. The optimality conditions of differentiable vector optimization problems, J. Math. Anal. Appl., Volume 201 (1996), pp. 35-43 | DOI | Zbl

[26] Lin, J. G. Maximal vectors and multi-objective optimization, J. Optimization Theory Appl., Volume 18 (1976), pp. 41-64 | DOI | Zbl

[27] Luc, D. T. Theory of vector optimization, Springer-Verlag, Berlin, 1989 | Zbl | DOI

[28] Mangasarian, O. L. Nonlinear programming, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1994 | DOI

[29] Megahed, A. A.; El-Banna, A.-Z.; Youness, E. A.; Gomaa, H. G. A combined interactive approach for solving $E$-convex multiobjective nonlinear programming problem, Appl. Math. Comput., Volume 217 (2011), pp. 6777-6784 | DOI | Zbl

[30] Megahed, A. A.; Gomma, H. G.; Youness, E. A.; El-Banna, A. H. Optimality conditions of $E$-convex programming for an $E$-differentiable function, J. Inequal. Appl., Volume 2013 (2013), pp. 1-11 | DOI | Zbl

[31] Mirzapour, F. Some properties on $E$-convex and $E$-quasi-convex functions, The 18th Seminar on Mathematical Analysis and its Applications (Moallem University), Volume 2009 (2009), pp. 178-181

[32] Mishra, S. K.; Wang, S.-Y.; Lai, K. K. Generalized convexity and vector optimization, Springer-Verlag, Berlin, 2009 | DOI

[33] Nobakhtian, S. Infine functions and nonsmooth multiobjective optimization problems, Comput. Math. Appl., Volume 51 (2006), pp. 1385-1394 | DOI | Zbl

[34] Piao, G.-R.; Jiao, L. G.; Kim, D. S. Optimality and mixed duality in multiobjective $E$-convex programming, J. Inequal. Appl., Volume 2015 (2015), pp. 1-13 | Zbl | DOI

[35] Rockafellar, R. T. The theory of subgradients and its applications to problems of optimization, Heldermann Verlag, Berlin, 1981 | Zbl

[36] Grace, J. Sheiba; Thangavelu, P. Properties of $E$-convex sets, Tamsui Oxf. J. Math. Sci., Volume 25 (2009), pp. 1-7 | Zbl

[37] Soleimani-Damaneh, M. $E$-convexity and its generalizations, Int. J. Comput. Math., Volume 88 (2011), pp. 3335-3349 | Zbl | DOI

[38] Syau, Y.-R.; Lee, E. S. Some properties of $E$-convex functions, Appl. Math. Lett., Volume 18 (2005), pp. 1074-1080 | Zbl | DOI

[39] Yang, X. M. On $E$-convex sets, $E$-convex functions, and $E$-convex programming, J. Optim. Theory Appl., Volume 109 (2001), pp. 699-704 | Zbl | DOI

[40] Youness, E. A. $E$-convex sets, $E$-convex functions, and $E$-convex programming, J. Optim. Theory Appl., Volume 102 (1999), pp. 439-450 | DOI | Zbl

[41] Youness, E. A. Optimality criteria in $E$-convex programming, Chaos Solitons Fractals, Volume 12 (2001), pp. 1737-1745 | Zbl | DOI

[42] Youness, E. A. Quasi and strictly quasi $E$-convex functions, J. Stat. Manag. Syst., Volume 4 (2001), pp. 201-210 | DOI | Zbl

[43] Youness, E. A. Characterization of efficient solutions of multi-objective $E$-convex programming problems, Appl. Math. Comput., Volume 151 (2004), pp. 755-761 | DOI | Zbl

[44] Youness, E. A.; Emam, T. Strongly $E$-convex sets and strongly $E$-convex functions, J. Interdiscip. Math., Volume 8 (2005), pp. 107-117 | Zbl | DOI

Cité par Sources :