Voir la notice de l'article provenant de la source International Scientific Research Publications
Antczak, Tadeusz  1 ; Abdulaleem, Najeeb  2
@article{JNSA_2019_12_11_a5, author = {Antczak, Tadeusz and Abdulaleem, Najeeb }, title = {\(E\)-optimality conditions and {Wolfe} {\(E\)-duality} for {\(E\)-differentiable} vector optimization problems with inequality and equality constraints}, journal = {Journal of nonlinear sciences and its applications}, pages = {745-764}, publisher = {mathdoc}, volume = {12}, number = {11}, year = {2019}, doi = {10.22436/jnsa.012.11.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.06/} }
TY - JOUR AU - Antczak, Tadeusz AU - Abdulaleem, Najeeb TI - \(E\)-optimality conditions and Wolfe \(E\)-duality for \(E\)-differentiable vector optimization problems with inequality and equality constraints JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 745 EP - 764 VL - 12 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.06/ DO - 10.22436/jnsa.012.11.06 LA - en ID - JNSA_2019_12_11_a5 ER -
%0 Journal Article %A Antczak, Tadeusz %A Abdulaleem, Najeeb %T \(E\)-optimality conditions and Wolfe \(E\)-duality for \(E\)-differentiable vector optimization problems with inequality and equality constraints %J Journal of nonlinear sciences and its applications %D 2019 %P 745-764 %V 12 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.06/ %R 10.22436/jnsa.012.11.06 %G en %F JNSA_2019_12_11_a5
Antczak, Tadeusz ; Abdulaleem, Najeeb . \(E\)-optimality conditions and Wolfe \(E\)-duality for \(E\)-differentiable vector optimization problems with inequality and equality constraints. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 11, p. 745-764. doi : 10.22436/jnsa.012.11.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.06/
[1] Sufficient optimality conditions and duality in multiobjective optimization involving generalized convexity, Numer. Funct. Anal. Optim., Volume 22 (2006), pp. 775-788 | Zbl | DOI
[2] Sufficiency and duality in multiobjective programming with generalized $(F,\rho )$-convexity, J. Appl. Anal., Volume 11 (2005), pp. 19-33 | DOI
[3] On $G$-invex multiobjective programming. I. Optimality, J. Global Optim., Volume 43 (2009), pp. 97-109 | DOI | Zbl
[4] On $G$-invex multiobjective programming. II. Duality, J. Global Optim., Volume 43 (2009), pp. 111-140 | DOI | Zbl
[5] On nonsmooth $(\Phi, \rho)$-invex multiobjective programming in finite-dimensional Euclidean spaces, J. Adv. Math. Stud., Volume 7 (2014), pp. 127-145
[6] Multiobjective programming under nondifferentiable $G$--$V$--invexity, Filomat, Volume 30 (2016), pp. 2909-2923 | Zbl
[7] Optimality conditions in quasidifferentiable vector optimization, J. Optim. Theory Appl., Volume 171 (2016), pp. 708-725 | Zbl | DOI
[8] $KT$--$G$--invexity in multiobjective programming, Int. J. Math. Comput., Volume 27 (2016), pp. 23-39
[9] Efficiency under pseudoinvexity and duality in differentiable and non-differentiable multiobjective problems, A characterization, in: Recent developments on mathematical programming and applications, Volume 2009 (2009), pp. 1-14
[10] Optimality conditions in vector optimization, Bentham Science Publishers, Oak Park, 2010
[11] Some properties of semi-$E$-convex functions, J. Math. Anal. Appl., Volume 275 (2002), pp. 251-262 | DOI | Zbl
[12] Optimality conditions and duality in nonsmooth multiobjective optimization problems, Ann. Oper. Res., Volume 217 (2014), pp. 117-136 | Zbl | DOI
[13] The notion of invexity in vector optimization: smooth and nonsmooth case, in: Generalized Convexity, Generalized Monotonicity: Recent Results, Volume 1998 (1998), pp. 389-405 | Zbl | DOI
[14] Optimality conditions for vector optimization problems, J. Optim. Theory Appl., Volume 142 (2009), pp. 323-342 | DOI
[15] Some properties of geodesic semi-$E$-convex functions, Nonlinear Anal., Volume 74 (2011), pp. 6805-6813 | Zbl | DOI
[16] On geodesic $E$-convex sets, geodesic $E$-convex functions and $E$-epigraphs, J. Optim. Theory Appl., Volume 155 (2012), pp. 239-251 | DOI | Zbl
[17] Vector optimization: theory, applications and extensions, Springer-Verlag, Berlin, 2011 | Zbl | DOI
[18] On generalised convex mathematical programming, J. Austral. Math. Soc. Ser. B, Volume 34 (1992), pp. 43-53 | DOI | Zbl
[19] Necessary conditions for optimality of nondifferentiable convex multiobjective programming, J. Optim. Theory Appl., Volume 40 (1983), pp. 167-174 | DOI | Zbl
[20] Optimality criteria and duality in multiple-objective optimization involving generalized invexity, J. Optim. Theory Appl., Volume 80 (1994), pp. 465-482 | Zbl | DOI
[21] On necessary optimality conditions in vector optimization problems, J. Optim. Theory Appl., Volume 58 (1988), pp. 63-81 | Zbl | DOI
[22] Optimality and duality for invex nonsmooth multiobjective programming problems, Optimization, Volume 53 (2004), pp. 165-176 | Zbl | DOI
[23] Nonsmooth multiobjective programs with $V$-$\rho$-invexity, Indian J. Pure Appl. Math., Volume 29 (1998), pp. 405-412 | Zbl
[24] Nonsmooth invexity in multiobjective programming, J. Inform. Optim. Sci., Volume 15 (1994), pp. 127-136 | DOI | Zbl
[25] The optimality conditions of differentiable vector optimization problems, J. Math. Anal. Appl., Volume 201 (1996), pp. 35-43 | DOI | Zbl
[26] Maximal vectors and multi-objective optimization, J. Optimization Theory Appl., Volume 18 (1976), pp. 41-64 | DOI | Zbl
[27] Theory of vector optimization, Springer-Verlag, Berlin, 1989 | Zbl | DOI
[28] Nonlinear programming, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1994 | DOI
[29] A combined interactive approach for solving $E$-convex multiobjective nonlinear programming problem, Appl. Math. Comput., Volume 217 (2011), pp. 6777-6784 | DOI | Zbl
[30] Optimality conditions of $E$-convex programming for an $E$-differentiable function, J. Inequal. Appl., Volume 2013 (2013), pp. 1-11 | DOI | Zbl
[31] Some properties on $E$-convex and $E$-quasi-convex functions, The 18th Seminar on Mathematical Analysis and its Applications (Moallem University), Volume 2009 (2009), pp. 178-181
[32] Generalized convexity and vector optimization, Springer-Verlag, Berlin, 2009 | DOI
[33] Infine functions and nonsmooth multiobjective optimization problems, Comput. Math. Appl., Volume 51 (2006), pp. 1385-1394 | DOI | Zbl
[34] Optimality and mixed duality in multiobjective $E$-convex programming, J. Inequal. Appl., Volume 2015 (2015), pp. 1-13 | Zbl | DOI
[35] The theory of subgradients and its applications to problems of optimization, Heldermann Verlag, Berlin, 1981 | Zbl
[36] Properties of $E$-convex sets, Tamsui Oxf. J. Math. Sci., Volume 25 (2009), pp. 1-7 | Zbl
[37] $E$-convexity and its generalizations, Int. J. Comput. Math., Volume 88 (2011), pp. 3335-3349 | Zbl | DOI
[38] Some properties of $E$-convex functions, Appl. Math. Lett., Volume 18 (2005), pp. 1074-1080 | Zbl | DOI
[39] On $E$-convex sets, $E$-convex functions, and $E$-convex programming, J. Optim. Theory Appl., Volume 109 (2001), pp. 699-704 | Zbl | DOI
[40] $E$-convex sets, $E$-convex functions, and $E$-convex programming, J. Optim. Theory Appl., Volume 102 (1999), pp. 439-450 | DOI | Zbl
[41] Optimality criteria in $E$-convex programming, Chaos Solitons Fractals, Volume 12 (2001), pp. 1737-1745 | Zbl | DOI
[42] Quasi and strictly quasi $E$-convex functions, J. Stat. Manag. Syst., Volume 4 (2001), pp. 201-210 | DOI | Zbl
[43] Characterization of efficient solutions of multi-objective $E$-convex programming problems, Appl. Math. Comput., Volume 151 (2004), pp. 755-761 | DOI | Zbl
[44] Strongly $E$-convex sets and strongly $E$-convex functions, J. Interdiscip. Math., Volume 8 (2005), pp. 107-117 | Zbl | DOI
Cité par Sources :