Three-Point boundary value problems associated with first order matrix difference system-existence and uniqueness via shortest and closest Lattice vector methods
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 11, p. 720-727.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we shall be concerned with the existence and uniqueness of solution to three- point boundary value problems associated with a system of first order matrix difference system. Shortest and Closest Lattice vector methods are used as a tool to obtain the best least square solution of the three-point boundary value problem when the characteristic matrix D is rectangular. An efficient decode algorithm is presented to find the shortest and closest vector and prove that this vector is the best least square solution of the three-point boundary value problem.
DOI : 10.22436/jnsa.012.11.03
Classification : 34B15, 93B05, 93B15
Keywords: Matrix difference system, fundamental matrix, closest and shortest vector methods, decode algorithms

Kanuri, Kasi Viswanadh V.  1 ; Murty, K. N.  2

1 3669 Leatherwood,, Dr. Frisco, TX 75033, USA
2 Department of Applied Mathematics, Andhra University, Waltair (A.P), 530017, India
@article{JNSA_2019_12_11_a2,
     author = {Kanuri, Kasi Viswanadh V.  and Murty, K. N. },
     title = {Three-Point boundary value problems associated with first order matrix difference system-existence and uniqueness via shortest and closest {Lattice} vector methods},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {720-727},
     publisher = {mathdoc},
     volume = {12},
     number = {11},
     year = {2019},
     doi = {10.22436/jnsa.012.11.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.03/}
}
TY  - JOUR
AU  - Kanuri, Kasi Viswanadh V. 
AU  - Murty, K. N. 
TI  - Three-Point boundary value problems associated with first order matrix difference system-existence and uniqueness via shortest and closest Lattice vector methods
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 720
EP  - 727
VL  - 12
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.03/
DO  - 10.22436/jnsa.012.11.03
LA  - en
ID  - JNSA_2019_12_11_a2
ER  - 
%0 Journal Article
%A Kanuri, Kasi Viswanadh V. 
%A Murty, K. N. 
%T Three-Point boundary value problems associated with first order matrix difference system-existence and uniqueness via shortest and closest Lattice vector methods
%J Journal of nonlinear sciences and its applications
%D 2019
%P 720-727
%V 12
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.03/
%R 10.22436/jnsa.012.11.03
%G en
%F JNSA_2019_12_11_a2
Kanuri, Kasi Viswanadh V. ; Murty, K. N. . Three-Point boundary value problems associated with first order matrix difference system-existence and uniqueness via shortest and closest Lattice vector methods. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 11, p. 720-727. doi : 10.22436/jnsa.012.11.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.03/

[1] Ding, D.; Zhu, G.; Wang, X. A Genetic Algorithm for Searching Shortest Lattice Vector of SVP challenge, J. Elect. Inform. Tech., Volume 35 (2013), pp. 1940-1945 | DOI

[2] Hermite, C. Oeuvres de Charles Hermite (French) [Works of Charles Hermite. Volume 1], Edited and with a foreword by Emile Picard, Reprint of the 1905 original Cambridge Library Collection, Cambridge University Press, Cambridge, 2009 | DOI

[3] Kannan, R. Improved algorithms for integer programming and related lattice problems, Proceedings of the 15th annual ACM symposium on Theory of computing, Volume 1983 (1983), pp. 193-206 | DOI

[4] Kannan, R. Minkowski's Convex Body Theorem and Integer Programming, Math. Oper. Res., Volume 12 (1987), pp. 415-440 | DOI | Zbl

[5] Korkine, A.; Zolotareff, G. Sur les formes quadratiques, Math. Ann. (French), Volume 6 (1873), pp. 336-389 | DOI

[6] Lakshmikantham, V.; Trigante, D. Theory of Difference Equations: Numerical Methods and Applications, Academic Press, Boston, 1988 | Zbl

[7] Lenstra, A. K.; Lenstra, H. W.; Lovász, L. Factoring Polynomials with Rational Coefficients, Math. Ann., Volume 261 (1982), pp. 515-534 | Zbl | DOI

[8] Minkowski, H. Geometrie der zahlen, Band 40 Johnson Reprint Corp., New York-London, 1968

[9] Murty, K. N.; Andreou, S.; Viswanadh, K. V. K. Qualitative properties of general first order matrix difference systems, Nonlinear Stud., Volume 16 (2009), pp. 359-369 | Zbl

[10] Rice, J. R. Experiments on Gram--Schmidt Orthogonalization, Math. Comp., Volume 20 (1966), pp. 325-328 | Zbl

[11] Schnorr, C.-P.; Euchner, M. Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems, Math. Programming, Volume 66 (1994), pp. 181-199 | DOI | Zbl

[12] Sreedharan, V. P. A note on the modified Gram--Schmidt process, Int. J. Comput. Math., Volume 24 (1988), pp. 277-290 | DOI | Zbl

[13] Swapna, N.; Kumar, S. Udaya; Murty, K. N. Best Least Square Solution of Boundary Value Problems Associated with a System of First Order Matrix Differential Equation, Electronic Modeling, Volume 38 (2015), pp. 1-14

[14] Boas, P. Van Emde Another NP-complete partition problem and the complexity of computing short vectors in a lattice, Department of Mathmatics, University of Amsterdam (Tecnical Report), Amsterdam, 1981

[15] Voronoi, G. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs, J. für Math., Volume 134 (1908), pp. 198-287 | DOI | Zbl

Cité par Sources :