Voir la notice de l'article provenant de la source International Scientific Research Publications
Kanuri, Kasi Viswanadh V.  1 ; Murty, K. N.  2
@article{JNSA_2019_12_11_a2, author = {Kanuri, Kasi Viswanadh V. and Murty, K. N. }, title = {Three-Point boundary value problems associated with first order matrix difference system-existence and uniqueness via shortest and closest {Lattice} vector methods}, journal = {Journal of nonlinear sciences and its applications}, pages = {720-727}, publisher = {mathdoc}, volume = {12}, number = {11}, year = {2019}, doi = {10.22436/jnsa.012.11.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.03/} }
TY - JOUR AU - Kanuri, Kasi Viswanadh V. AU - Murty, K. N. TI - Three-Point boundary value problems associated with first order matrix difference system-existence and uniqueness via shortest and closest Lattice vector methods JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 720 EP - 727 VL - 12 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.03/ DO - 10.22436/jnsa.012.11.03 LA - en ID - JNSA_2019_12_11_a2 ER -
%0 Journal Article %A Kanuri, Kasi Viswanadh V. %A Murty, K. N. %T Three-Point boundary value problems associated with first order matrix difference system-existence and uniqueness via shortest and closest Lattice vector methods %J Journal of nonlinear sciences and its applications %D 2019 %P 720-727 %V 12 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.03/ %R 10.22436/jnsa.012.11.03 %G en %F JNSA_2019_12_11_a2
Kanuri, Kasi Viswanadh V. ; Murty, K. N. . Three-Point boundary value problems associated with first order matrix difference system-existence and uniqueness via shortest and closest Lattice vector methods. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 11, p. 720-727. doi : 10.22436/jnsa.012.11.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.03/
[1] A Genetic Algorithm for Searching Shortest Lattice Vector of SVP challenge, J. Elect. Inform. Tech., Volume 35 (2013), pp. 1940-1945 | DOI
[2] Oeuvres de Charles Hermite (French) [Works of Charles Hermite. Volume 1], Edited and with a foreword by Emile Picard, Reprint of the 1905 original Cambridge Library Collection, Cambridge University Press, Cambridge, 2009 | DOI
[3] Improved algorithms for integer programming and related lattice problems, Proceedings of the 15th annual ACM symposium on Theory of computing, Volume 1983 (1983), pp. 193-206 | DOI
[4] Minkowski's Convex Body Theorem and Integer Programming, Math. Oper. Res., Volume 12 (1987), pp. 415-440 | DOI | Zbl
[5] Sur les formes quadratiques, Math. Ann. (French), Volume 6 (1873), pp. 336-389 | DOI
[6] Theory of Difference Equations: Numerical Methods and Applications, Academic Press, Boston, 1988 | Zbl
[7] Factoring Polynomials with Rational Coefficients, Math. Ann., Volume 261 (1982), pp. 515-534 | Zbl | DOI
[8] Geometrie der zahlen, Band 40 Johnson Reprint Corp., New York-London, 1968
[9] Qualitative properties of general first order matrix difference systems, Nonlinear Stud., Volume 16 (2009), pp. 359-369 | Zbl
[10] Experiments on Gram--Schmidt Orthogonalization, Math. Comp., Volume 20 (1966), pp. 325-328 | Zbl
[11] Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems, Math. Programming, Volume 66 (1994), pp. 181-199 | DOI | Zbl
[12] A note on the modified Gram--Schmidt process, Int. J. Comput. Math., Volume 24 (1988), pp. 277-290 | DOI | Zbl
[13] Best Least Square Solution of Boundary Value Problems Associated with a System of First Order Matrix Differential Equation, Electronic Modeling, Volume 38 (2015), pp. 1-14
[14] Another NP-complete partition problem and the complexity of computing short vectors in a lattice, Department of Mathmatics, University of Amsterdam (Tecnical Report), Amsterdam, 1981
[15] Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs, J. für Math., Volume 134 (1908), pp. 198-287 | DOI | Zbl
Cité par Sources :