Quasi-effective stability for time-dependent nearly integrable Hamiltonian systems
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 11, p. 711-719.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper deals with the stability of the orbits for time-dependent nearly integrable Hamiltonian systems. Under the classical non-degeneracy in KAM theory we prove that the considered system possesses quasi-effective stability. Our result generalized the works in [F. Z. Cong, J. L. Hong, H. T. Li, Dyn. Syst. Ser. B, $\bf 21$ (2016), 67--80] to time-dependent system and gave a connection between KAM theorem and effective stability.
DOI : 10.22436/jnsa.012.11.02
Classification : 37J25, 37J40
Keywords: Quasi-effective stability, non-degeneracy, time-dependent system

Cong, Fuzhong  1 ; Hao, Tianchu  1 ; Feng, Xue  1

1 Fundamental Department, Aviation University of Air Force Changchun, 130022, People's Republic of China
@article{JNSA_2019_12_11_a1,
     author = {Cong, Fuzhong  and Hao, Tianchu  and Feng, Xue },
     title = {Quasi-effective stability for time-dependent nearly integrable {Hamiltonian} systems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {711-719},
     publisher = {mathdoc},
     volume = {12},
     number = {11},
     year = {2019},
     doi = {10.22436/jnsa.012.11.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.02/}
}
TY  - JOUR
AU  - Cong, Fuzhong 
AU  - Hao, Tianchu 
AU  - Feng, Xue 
TI  - Quasi-effective stability for time-dependent nearly integrable Hamiltonian systems
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 711
EP  - 719
VL  - 12
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.02/
DO  - 10.22436/jnsa.012.11.02
LA  - en
ID  - JNSA_2019_12_11_a1
ER  - 
%0 Journal Article
%A Cong, Fuzhong 
%A Hao, Tianchu 
%A Feng, Xue 
%T Quasi-effective stability for time-dependent nearly integrable Hamiltonian systems
%J Journal of nonlinear sciences and its applications
%D 2019
%P 711-719
%V 12
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.02/
%R 10.22436/jnsa.012.11.02
%G en
%F JNSA_2019_12_11_a1
Cong, Fuzhong ; Hao, Tianchu ; Feng, Xue . Quasi-effective stability for time-dependent nearly integrable Hamiltonian systems. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 11, p. 711-719. doi : 10.22436/jnsa.012.11.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.02/

[1] Arnol'd, V. I. Proof of a theorem by A. N. Komolgorov on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian, Russ. Math. Surv., Volume 18 (1963), pp. 9-36

[2] Bounemoura, A. Effective stability for slow time--dependent near-integrable Hamiltonians and application, C. R. Math. Acad. Sci. Paris, Volume 351 (2013), pp. 673-676 | DOI | Zbl

[3] Cong, F. Z.; Hong, J. L.; Li, H. T. Quasi-effective stability for nearly integrable Hamiltonian systems, Dyn. Syst. Ser. B, Volume 21 (2016), pp. 67-80 | Zbl

[4] Cong, F. Z.; Li, H. T. Quasi-effective stability for a nearly integrable volume-preserving mapping, Dyn. Syst. Ser. B, Volume 20 (2015), pp. 1959-1970 | Zbl

[5] Efstathiou, K.; Sadovskii, D. A. Normalization and global analysis of perturbations of the hydrogen atom, Rev. Mod. Phys., Volume 82 (2010), pp. 2099-2154 | DOI

[6] Fassò, F.; Fontanari, D.; Sadovskií, D. R. An Application of Nekhoroshev Theory to the Study of the Perturbed Hydrogen Atom, Math. Phys. Anal. Geom., Volume 18 (2015), pp. 1-23 | DOI

[7] Morbidelli, A.; Giorgilli, A. On a connection between KAM and Nekhoroshev's theorems, Phys. D, Volume 86 (1995), pp. 514-516 | DOI | Zbl

[8] Nekhoroshev, N. N. Exponential estimate of the stability time of nearly integrable Hamiltonian systems, Russ. Math. Surv., Volume 32 (1977), pp. 1-65 | Zbl

[9] Pöschel, J. Über invariante tori in differenzierbaren Hamiltonschen Systemen, Bonn. Math. Schr., Volume 120 (1980), pp. 1-103 | Zbl

[10] Rüssmann, H. On optimal estimates for the solution of linear partial differential equations of first order with constant coefficients on the torus, in: Dynamical Systems, Theory and Applications, Springer, Volume 1975 (1975), pp. 598-624 | DOI

Cité par Sources :