Voir la notice de l'article provenant de la source International Scientific Research Publications
Song, Qi-Qing  1 ; Luo, Ping  1
@article{JNSA_2019_12_11_a0, author = {Song, Qi-Qing and Luo, Ping }, title = {On stable fixed points under several kinds of strong perturbations}, journal = {Journal of nonlinear sciences and its applications}, pages = {699-710}, publisher = {mathdoc}, volume = {12}, number = {11}, year = {2019}, doi = {10.22436/jnsa.012.11.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.01/} }
TY - JOUR AU - Song, Qi-Qing AU - Luo, Ping TI - On stable fixed points under several kinds of strong perturbations JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 699 EP - 710 VL - 12 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.01/ DO - 10.22436/jnsa.012.11.01 LA - en ID - JNSA_2019_12_11_a0 ER -
%0 Journal Article %A Song, Qi-Qing %A Luo, Ping %T On stable fixed points under several kinds of strong perturbations %J Journal of nonlinear sciences and its applications %D 2019 %P 699-710 %V 12 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.01/ %R 10.22436/jnsa.012.11.01 %G en %F JNSA_2019_12_11_a0
Song, Qi-Qing ; Luo, Ping . On stable fixed points under several kinds of strong perturbations. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 11, p. 699-710. doi : 10.22436/jnsa.012.11.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.11.01/
[1] An essential map approach for multivalued A--proper, weakly inward, DKT and weakly closed maps, Comput. Math. Appl., Volume 38 (1999), pp. 89-100 | Zbl | DOI
[2] Essential and inessential maps and continuation theorems, Appl. Math. Lett., Volume 13 (2000), pp. 83-90 | Zbl
[3] On essential fixed points of compact mappings on arbitrary absolute neighborhood retracts and their application to multivalued fractals, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 26 (2016), pp. 1-11 | Zbl | DOI
[4] Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 20 (1967), pp. 197-228
[5] Essential equilibrium in normal--form games with perturbed actions and payoffs, J. Math. Econom., Volume 75 (2018), pp. 108-115 | DOI | Zbl
[6] The stability of set of solutions for symmetric vector quasi--equilibrium problems, J. Optim. Theory Appl., Volume 136 (2008), pp. 359-374 | DOI | Zbl
[7] Essential and non essential fixed points, Amer. J. Math., Volume 72 (1950), pp. 315-322 | Zbl
[8] Game theory, MIT press, Cambridge, 1991 | Zbl
[9] Sur la méthode de continuité de Poincaré, C. R. Acad. Sci. Paris Sér. A-B, Volume 282 (1976), pp. 983-985 | Zbl
[10] On the definition of the strategic stability of equilibria, Econometrica, Volume 58 (1990), pp. 1365-1390 | Zbl
[11] On the relation among some definitions of strategic stability, Math. Oper. Res., Volume 26 (2001), pp. 611-635 | DOI | Zbl
[12] On the existence and essential components of solution sets for systems of generalized quasi--variational relation problems, J. Inequal. Appl., Volume 2014 (2014), pp. 1-12 | DOI
[13] Essential fixed points of the multivalued mappings, Acta Math. Sinica, Volume 11 (1962), pp. 376-379 | DOI | Zbl
[14] On essential components of the set of fixed points, Osaka Math. J., Volume 4 (1952), pp. 19-22 | Zbl
[15] Strongly stable equilibrium points of $N$--person noncooperative games, Math. Oper. Res., Volume 10 (1985), pp. 650-663 | DOI | Zbl
[16] On the strategic stability of equilibria, Econometrica, Volume 54 (1986), pp. 1003-1037 | Zbl
[17] On existence and essential components of the solution set for the system of vector quasi--equilibrium problems, Nonlinear Anal., Volume 63 (2005), pp. 2445-2452 | DOI | Zbl
[18] Fixed points of parameterized perturbations, J. Math. Econom., Volume 55 (2014), pp. 186-189 | DOI | Zbl
[19] Essential sets and fixed points, Amer. J. Math., Volume 75 (1953), pp. 497-509 | Zbl
[20] Semi-Riemannian geomerty with applications to relativity, Academic Press, London, 1983
[21] On the existence of essential and trembling--hand perfect equilibria in discontinuous games, Econ. Theory Bull. 2, Volume 2 (2014), pp. 1-12 | DOI
[22] Essential sets of fixed points for correspondences with application to Nash equilibria, Fixed Point Theory, Volume 17 (2016), pp. 141-150 | Zbl
[23] On Essential Stable Sets of Solutions in Set Optimization Problems, J. Optim. Theory Appl., Volume 156 (2013), pp. 591-599 | DOI | Zbl
[24] Topological Methods for Set--Valued Nonlinear Analysis, World Scientific Publishing Co. Pte. Ltd., Hackensack, 2008 | Zbl | DOI
[25] Hausdorff distance and convex sets, J. Convex Anal., Volume 14 (2007), pp. 109-117 | Zbl
[26] Essential equilibrium points of $n$-person non-cooperative games, Sci. Sinica, Volume 11 (1962), pp. 1307-1322 | DOI | Zbl
[27] On the strongly essential components of Nash equilibria of infinite $n$-person games with quasiconcave payoffs, Nonlinear Anal., Volume 63 (2005), pp. 2639-2647 | Zbl | DOI
[28] Stability of fixed points of set--valued mappings and strategic stability of Nash equilibria, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 3599-3611 | Zbl
[29] Strongly essential set of Ky Fan's points and the stability of Nash equilibrium, J. Math. Anal. Appl., Volume 459 (2018), pp. 839-851 | DOI | Zbl
[30] Essential stability of $\alpha$-core, Internat. J. Game Theory, Volume 46 (2017), pp. 13-28 | Zbl | DOI
[31] Essential components of Nash equilibria for games parametrized by payoffs and strategies, Nonlinear Anal., Volume 71 (2009), pp. 2322-2326 | DOI | Zbl
[32] Essential stability of cooperative equilibria for population games, Optim. Lett., Volume 2018 (2018), pp. 1-10 | DOI
[33] Constructed nets with perturbations for equilibrium and fixed point problems, J. Inequal. Appl., Volume 2014 (2014), pp. 1-14 | Zbl | DOI
[34] Essential equilibria of $n$-person noncooperative games, J. Math. Econom., Volume 31 (1999), pp. 361-372 | DOI | Zbl
[35] Equivalence results between Nash equilibrium theorem and some fixed point theorems, Fixed Point Theory Appl., Volume 2016 (2016), pp. 1-10 | DOI | Zbl
[36] Further results on structural stability and robustness to bounded rationality, J. Math. Econom., Volume 67 (2016), pp. 49-53 | DOI | Zbl
Cité par Sources :