A higher order nonlinear neutral differential equation
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 10, p. 675-698.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper is concerned with the higher order nonlinear neutral differential equation
$ [a(t)(x(t)+b(t)x(\tau(t)))']^{(n-1)}+f(t, x(g_1(t)),\ldots, x(g_k(t)))=c(t),\quad t\ge t_0. $
By dint of the Leray-Schauder nonlinear alternative, Rothe fixed point theorem and some new techniques, we prove the existence of uncountably many bounded positive solutions for the equation. Several nontrivial examples are given to illustrate the applications and advantages of the results presented in this paper.
DOI : 10.22436/jnsa.012.10.06
Classification : 34K40, 35G20
Keywords: Higher order nonlinear neutral differential equation, uncountably many bounded positive solutions, Leray-Schauder nonlinear alternative theorem, Rothe fixed point theorem

Jiang, Guojing  1 ; Sun, Wei  2 ; An, Zhefu  3 ; Zhao, Liangshi  4

1 Basic Teaching Department, Vocational Technical College, Dalian, Liaoning 116035, China
2 Jiaokou No.1 Middle School, Lvliang, Shanxi 032400, China
3 School of Mathematics, Liaoning University, Shenyang, Liaoning 110036, China
4 Center for Studies of Marine Economy and Sustainable Development, Liaoning Normal University, Dalian, Liaoning 116029, China
@article{JNSA_2019_12_10_a5,
     author = {Jiang, Guojing  and Sun, Wei  and An, Zhefu  and Zhao, Liangshi },
     title = {A higher order nonlinear neutral differential equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {675-698},
     publisher = {mathdoc},
     volume = {12},
     number = {10},
     year = {2019},
     doi = {10.22436/jnsa.012.10.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.06/}
}
TY  - JOUR
AU  - Jiang, Guojing 
AU  - Sun, Wei 
AU  - An, Zhefu 
AU  - Zhao, Liangshi 
TI  - A higher order nonlinear neutral differential equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 675
EP  - 698
VL  - 12
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.06/
DO  - 10.22436/jnsa.012.10.06
LA  - en
ID  - JNSA_2019_12_10_a5
ER  - 
%0 Journal Article
%A Jiang, Guojing 
%A Sun, Wei 
%A An, Zhefu 
%A Zhao, Liangshi 
%T A higher order nonlinear neutral differential equation
%J Journal of nonlinear sciences and its applications
%D 2019
%P 675-698
%V 12
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.06/
%R 10.22436/jnsa.012.10.06
%G en
%F JNSA_2019_12_10_a5
Jiang, Guojing ; Sun, Wei ; An, Zhefu ; Zhao, Liangshi . A higher order nonlinear neutral differential equation. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 10, p. 675-698. doi : 10.22436/jnsa.012.10.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.06/

[1] Agarwal, R. P.; Grace, S. R.; O'Regan, D. Nonoscillatory solutions for discrete equations, Comput. Math. Appl., Volume 45 (2003), pp. 1297-1302 | Zbl

[2] Deimling, K. Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985 | DOI

[3] Liu, Z.; Gao, H.; Kang, S. M.; Shim, S. H. Existence and mann iterative approximations of nonoscillatory solutions of nth order neutral delay differential equations, J. Math. Anal. Appl., Volume 329 (2007), pp. 515-529 | DOI

[4] Zhang, Z. G.; Yang, A. J.; Di, C. N. Existence of positive solutions of second order nonlinear neutral differential equations with positive and negative terms, J. Appl. Math. Comput., Volume 25 (2007), pp. 245-253 | Zbl | DOI

[5] Zhou, Y. Existence for nonoscillatory solutions of second order nonlinear differential equations, J. Math. Anal. Appl., Volume 331 (2007), pp. 91-96 | Zbl | DOI

[6] Zhou, X. L.; Yu, R. Oscillatory behavior of higher order nonlinear neutral forced differential equations with oscillating coefficients, Comput. Math. Anal., Volume 56 (2008), pp. 1562-1568 | DOI | Zbl

[7] Zhou, Y.; Zhang, B. G.; Huang, Y. Q. Existence for nonoscillatory solutions of higher order nonlinear neutral differential equations, Czechoslovak Math. J., Volume 55 (2005), pp. 237-253 | Zbl | DOI

Cité par Sources :