Voir la notice de l'article provenant de la source International Scientific Research Publications
Lateef, Durdana  1 ; Ahmad, Jamshaid  2
@article{JNSA_2019_12_10_a4, author = {Lateef, Durdana and Ahmad, Jamshaid }, title = {Fixed point theorems for {\(\Theta\)-contractions} in left {\(K\)-complete} {\(T_{1}\)-quasi} metric space}, journal = {Journal of nonlinear sciences and its applications}, pages = {667-674}, publisher = {mathdoc}, volume = {12}, number = {10}, year = {2019}, doi = {10.22436/jnsa.012.10.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.05/} }
TY - JOUR AU - Lateef, Durdana AU - Ahmad, Jamshaid TI - Fixed point theorems for \(\Theta\)-contractions in left \(K\)-complete \(T_{1}\)-quasi metric space JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 667 EP - 674 VL - 12 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.05/ DO - 10.22436/jnsa.012.10.05 LA - en ID - JNSA_2019_12_10_a4 ER -
%0 Journal Article %A Lateef, Durdana %A Ahmad, Jamshaid %T Fixed point theorems for \(\Theta\)-contractions in left \(K\)-complete \(T_{1}\)-quasi metric space %J Journal of nonlinear sciences and its applications %D 2019 %P 667-674 %V 12 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.05/ %R 10.22436/jnsa.012.10.05 %G en %F JNSA_2019_12_10_a4
Lateef, Durdana ; Ahmad, Jamshaid . Fixed point theorems for \(\Theta\)-contractions in left \(K\)-complete \(T_{1}\)-quasi metric space. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 10, p. 667-674. doi : 10.22436/jnsa.012.10.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.05/
[1] Fixed and periodic points of generalized contractions in metric spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-11 | DOI | Zbl
[2] New fixed point theorems for generalized $F$-contractions in complete metric spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-18 | Zbl | DOI
[3] Common Fixed Point Theorems for JS-Contractions, Bull. Math. Anal. Appl., Volume 8 (2016), pp. 12-22 | Zbl
[4] Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett., Volume 23 (2010), pp. 310-316 | Zbl | DOI
[5] Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundam. Math., Volume 3 (1922), pp. 133-181 | Zbl | DOI
[6] Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed Point Theory Appl., Volume 2006 (2006), pp. 1-7 | Zbl | DOI
[7] Some fixed point results for multivalued $F$--contractions on quasi metric spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, Volume 111 (2017), pp. 177-187 | Zbl | DOI
[8] On a broad category of multivalued weakly Picard operators, Fixed Point Theory, Volume 18 (2017), pp. 229-236 | Zbl
[9] Coincidence point theorems for generalized contractions with application to integral equations, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-13 | Zbl | DOI
[10] Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-17 | DOI | Zbl
[11] Maps for which $F(T)=F(T^{n})$, In: Fixed Point Theory and Applications, Nova Science Publishers, Volume 2007 (2007), pp. 71-105
[12] A new generalization of the Banach contraction principle, J. Inequal. Appl., Volume 2014 (2014), pp. 1-8 | Zbl | DOI
[13] Commuting mappings and fixed points, Amer. Math. Monthly, Volume 83 (1976), pp. 261-263 | DOI | Zbl
[14] Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., Volume 9 (1986), pp. 771-779
[15] Fixed point theorem for $\alpha -\psi $ contractive type mappings, Nonlinear Anal., Volume 75 (2012), pp. 2154-2165 | DOI
[16] A generalization of Nadler fixed point theorem, Carpathian J. Math., Volume 31 (2015), pp. 403-410 | Zbl
Cité par Sources :