Fixed point theorems for $\Theta$-contractions in left $K$-complete $T_{1}$-quasi metric space
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 10, p. 667-674.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The aim of this paper is to define $\Theta _{\beta }^{u}=\left \{ v\in \mathcal{J}u:\Theta (\varrho (u,v))\leq \lbrack \Theta (\varrho (u,\mathcal{J}u))]^{\beta }\right \} $ and establish some new fixed point theorems in the setting of left $K$-complete $T_{1}$-quasi metric space. Our theorems generalize, extend, and unify several results of literature.
DOI : 10.22436/jnsa.012.10.05
Classification : 47H10, 54H25
Keywords: \(\Theta\)-contractions, property \(P\), property \(Q\), fixed points

Lateef, Durdana  1 ; Ahmad, Jamshaid  2

1 Department of Mathematics, College of Science, Taibah University, Al Madina Al Munawara, 41411, Kingdom of Saudi Arabia
2 Department of Mathematics, University of Jeddah, P. O. Box 80327, Jeddah 21589, Saudi Arabia
@article{JNSA_2019_12_10_a4,
     author = {Lateef, Durdana  and Ahmad, Jamshaid },
     title = {Fixed point theorems for {\(\Theta\)-contractions} in left {\(K\)-complete} {\(T_{1}\)-quasi} metric space},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {667-674},
     publisher = {mathdoc},
     volume = {12},
     number = {10},
     year = {2019},
     doi = {10.22436/jnsa.012.10.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.05/}
}
TY  - JOUR
AU  - Lateef, Durdana 
AU  - Ahmad, Jamshaid 
TI  - Fixed point theorems for \(\Theta\)-contractions in left \(K\)-complete \(T_{1}\)-quasi metric space
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 667
EP  - 674
VL  - 12
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.05/
DO  - 10.22436/jnsa.012.10.05
LA  - en
ID  - JNSA_2019_12_10_a4
ER  - 
%0 Journal Article
%A Lateef, Durdana 
%A Ahmad, Jamshaid 
%T Fixed point theorems for \(\Theta\)-contractions in left \(K\)-complete \(T_{1}\)-quasi metric space
%J Journal of nonlinear sciences and its applications
%D 2019
%P 667-674
%V 12
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.05/
%R 10.22436/jnsa.012.10.05
%G en
%F JNSA_2019_12_10_a4
Lateef, Durdana ; Ahmad, Jamshaid . Fixed point theorems for \(\Theta\)-contractions in left \(K\)-complete \(T_{1}\)-quasi metric space. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 10, p. 667-674. doi : 10.22436/jnsa.012.10.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.05/

[1] Abbas, M.; Ali, B.; Romaguera, S. Fixed and periodic points of generalized contractions in metric spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-11 | DOI | Zbl

[2] Ahmad, J.; Al-Rawashdeh, A.; Azam, A. New fixed point theorems for generalized $F$-contractions in complete metric spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-18 | Zbl | DOI

[3] Al-Rawashdeh, A.; Ahmad, J. Common Fixed Point Theorems for JS-Contractions, Bull. Math. Anal. Appl., Volume 8 (2016), pp. 12-22 | Zbl

[4] Altun, I.; Damjanović, B.; Djorić, D. Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett., Volume 23 (2010), pp. 310-316 | Zbl | DOI

[5] Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundam. Math., Volume 3 (1922), pp. 133-181 | Zbl | DOI

[6] Beg, I.; Abbas, M. Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed Point Theory Appl., Volume 2006 (2006), pp. 1-7 | Zbl | DOI

[7] Dağ, H.; Minak, G.; Altun, I. Some fixed point results for multivalued $F$--contractions on quasi metric spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, Volume 111 (2017), pp. 177-187 | Zbl | DOI

[8] Hançer, H. A.; Minak, G.; Altun, I. On a broad category of multivalued weakly Picard operators, Fixed Point Theory, Volume 18 (2017), pp. 229-236 | Zbl

[9] Hussain, N.; Ahmad, J.; Ćirić, L.; Azam, A. Coincidence point theorems for generalized contractions with application to integral equations, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-13 | Zbl | DOI

[10] Hussain, N.; Parvaneh, V.; Samet, B.; Vetro, C. Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-17 | DOI | Zbl

[11] Jeong, G. S.; Rhoades, B. E. Maps for which $F(T)=F(T^{n})$, In: Fixed Point Theory and Applications, Nova Science Publishers, Volume 2007 (2007), pp. 71-105

[12] Jleli, M.; Samet, B. A new generalization of the Banach contraction principle, J. Inequal. Appl., Volume 2014 (2014), pp. 1-8 | Zbl | DOI

[13] Jungck, G. Commuting mappings and fixed points, Amer. Math. Monthly, Volume 83 (1976), pp. 261-263 | DOI | Zbl

[14] Jungck, G. Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., Volume 9 (1986), pp. 771-779

[15] Samet, B.; Vetro, C.; Vetro, P. Fixed point theorem for $\alpha -\psi $ contractive type mappings, Nonlinear Anal., Volume 75 (2012), pp. 2154-2165 | DOI

[16] Vetro, F. A generalization of Nadler fixed point theorem, Carpathian J. Math., Volume 31 (2015), pp. 403-410 | Zbl

Cité par Sources :