A Fourier transform and convolution of Diamond operator
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 10, p. 656-666.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we define a new operator and give a sense of distribution theory to find the Fourier transform of new operator. It was found that the Fourier transform of new operator related to the Fourier transform of ultrahyperbolic operator and Diamond operator. And we also study the convolution products $\Box^{k}\delta \ast \Box^{l}$ and $\diamondsuit^{k}\delta\ast \diamondsuit^{l}.$
DOI : 10.22436/jnsa.012.10.04
Classification : 46F10, 46F12
Keywords: Diamond operator, Fourier transform, hypersurface

Satsanit, Wanchak  1

1 Department of Mathematics, Faculty of Science, Maejo University, Chiang Mai, 50290, Thailand
@article{JNSA_2019_12_10_a3,
     author = {Satsanit, Wanchak },
     title = {A {Fourier} transform and convolution of  {Diamond}  operator},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {656-666},
     publisher = {mathdoc},
     volume = {12},
     number = {10},
     year = {2019},
     doi = {10.22436/jnsa.012.10.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.04/}
}
TY  - JOUR
AU  - Satsanit, Wanchak 
TI  - A Fourier transform and convolution of  Diamond  operator
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 656
EP  - 666
VL  - 12
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.04/
DO  - 10.22436/jnsa.012.10.04
LA  - en
ID  - JNSA_2019_12_10_a3
ER  - 
%0 Journal Article
%A Satsanit, Wanchak 
%T A Fourier transform and convolution of  Diamond  operator
%J Journal of nonlinear sciences and its applications
%D 2019
%P 656-666
%V 12
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.04/
%R 10.22436/jnsa.012.10.04
%G en
%F JNSA_2019_12_10_a3
Satsanit, Wanchak . A Fourier transform and convolution of  Diamond  operator. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 10, p. 656-666. doi : 10.22436/jnsa.012.10.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.04/

[1] Tellez, M. A. Aguirre; Kananthai, A. On the convolution product of the Distributional Families related to the Diamond operator, Matematiche (Catania), Volume 57 (2002), pp. 39-48 | Zbl

[2] Tellez, M. A. Aguirre; Trione, S. E. The distribution Multiplicative product $P^{-\frac{s}{2}}_{\pm}\delta(x)$, Rev. Colombiana Mat., Volume 27 (1993), pp. 1-7

[3] Gel'fand, I. M.; Shilov, G. E. Generalized Function , (Translated from the Russian by Eugene Saletan), Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964

[4] Domínguez, A. González; Trione, S. E. On the Laplace transform of retarded Lorentz invariant functions, Adv. in Math., Volume 31 (1979), pp. 51-62 | Zbl | DOI

[5] Kananthai, A. On the Solution of the $n$-Dimensional Diamond Operator, Appl. Math. Comput., Volume 88 (1997), pp. 27-37 | DOI

[6] Kananthai, A. On the Fourier transform of the Diamond kernel of Marcel Riesz, Appl. Math. Comput., Volume 101 (1999), pp. 151-158 | DOI | Zbl

[7] Kananthai, A.; Nonlaopon, K. On the Residue of Generalized Function $P^{\lambda}$, Thai J. Math., Volume 1 (2003), pp. 49-57 | Zbl

[8] Nonlaopon, K.; Tellez, M. Aguirre The Residue of the Generalized function $P^{\lambda}_{+}$ in hypercone $P=(ar)^{2}-(br)^{2}$, to appear

[9] Nozaki, Y. On Riemann-Liouville integral of ultra--hyperbolic type, Kodai Math. Sem. Rep., Volume 16 (1964), pp. 69-87 | Zbl | DOI

[10] Trione, S. E.; Tellez, M. A. Aguirre The distribution convolution products of Marcel Riesz's ultra-hyperbolic kernel, Ravista de la Union Mathematica Argentina, Volume 39 (1995), pp. 115-124

Cité par Sources :