Common fixed point of generalized cyclic Banach algebra contractions and Banach algebra Kannan types of mappings on cone quasi metric spaces
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 10, p. 644-655.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper proves the existence of a unique common fixed point of two self mappings defined on complete cone quasi metric space $\mathfrak{C}$ with respect to Banach algebra, consequently in particular, it proves the existence of only one fixed point of a generalized cyclic Banach algebra contraction and a cyclic Banach algebra Kannan type mappings with respect to a couple of non empty subsets $(A, B)$ of a complete cone quasi metric space $\mathfrak{C}$. These existences extend the fixed point results of the attached references and then generalized the corresponding classical results in usual Banach spaces as well.
DOI : 10.22436/jnsa.012.10.03
Classification : 47H09, 47H10
Keywords: Quasi metric spaces, fixed point theorems, \(\{a,b,c\}\) generalized contractions, generalized \(\phi\) weak contractions, cyclic contraction mappings

Abou Bakr, Sahar Mohamed Ali  1

1 Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt
@article{JNSA_2019_12_10_a2,
     author = {Abou Bakr, Sahar Mohamed Ali },
     title = {Common fixed point of generalized cyclic {Banach} algebra contractions and {Banach} algebra {Kannan} types of mappings on cone quasi metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {644-655},
     publisher = {mathdoc},
     volume = {12},
     number = {10},
     year = {2019},
     doi = {10.22436/jnsa.012.10.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.03/}
}
TY  - JOUR
AU  - Abou Bakr, Sahar Mohamed Ali 
TI  - Common fixed point of generalized cyclic Banach algebra contractions and Banach algebra Kannan types of mappings on cone quasi metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 644
EP  - 655
VL  - 12
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.03/
DO  - 10.22436/jnsa.012.10.03
LA  - en
ID  - JNSA_2019_12_10_a2
ER  - 
%0 Journal Article
%A Abou Bakr, Sahar Mohamed Ali 
%T Common fixed point of generalized cyclic Banach algebra contractions and Banach algebra Kannan types of mappings on cone quasi metric spaces
%J Journal of nonlinear sciences and its applications
%D 2019
%P 644-655
%V 12
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.03/
%R 10.22436/jnsa.012.10.03
%G en
%F JNSA_2019_12_10_a2
Abou Bakr, Sahar Mohamed Ali . Common fixed point of generalized cyclic Banach algebra contractions and Banach algebra Kannan types of mappings on cone quasi metric spaces. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 10, p. 644-655. doi : 10.22436/jnsa.012.10.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.03/

[1] Abbas, M.; Rajić, V. Ćojbašić; Nazir, T.; Radenović, S. Common fixed point of mappings satisfying rational inequalities in ordered complex valued generalized metric spaces, Afr. Mat., Volume 26 (2015), pp. 17-30 | DOI | Zbl

[2] Ali, S. M. Fixed point theorems of $\{a, b, c\}$ contraction and nonexpansive type mappings in weakly Cauchy normed spaces, Anal. Theory Appl., Volume 29 (2013), pp. 280-288

[3] Bakr, S. M. Ali Abou Some Generalized Fixed Point Theorems of Contraction Type Mappings in Quasi Metric Spaces, J. Math. Stat., Volume 14 (2017), pp. 319-324 | DOI

[4] Aydi, H.; Karapinar, E.; Samet, B. Remarks on some recent fixed point theorems, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-6 | Zbl | DOI

[5] Çakally, H.; Sönmez, A.; Genç, Ç. On an equivalence of topological vector space valued cone metric spaces and metric spaces, Appl. Math. Lett., Volume 25 (2012), pp. 429-433 | DOI | Zbl

[6] Du, W.-S. A note on cone metric fixed point theory and its equivalence, Nonlinear Anal., Volume 72 (2010), pp. 2259-2261 | DOI | Zbl

[7] Dutta, P. N.; Choudhury, B. S. A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl., Volume 2008 (2008), pp. 1-8 | DOI | Zbl

[8] El-Shobaky, E.; Ali, S. M.; Ali, M. S. Generalization of Banach contraction principle in two directions, J. Math. Stat., Volume 3 (2007), pp. 112-115 | DOI

[9] Fernandez, J.; Malviya, N.; Radenovič, S.; Saxena, K. $F$--cone metric spaces over Banach algebra, Fixed Point Theory Appl., Volume 2017 (2017), pp. 1-18 | Zbl | DOI

[10] Fernandez, J.; Modi, G.; Malviya, N. Some fixed point theorems for contractive maps in N-cone metric spaces, Math. Sci. (Springer), Volume 9 (2015), pp. 33-38 | Zbl | DOI

[11] Fernandez, J.; Saxena, K.; Malviya, N. Fixed points of expansive maps in partial cone metric spaces, Gazi University J. Sci., Volume 27 (2014), pp. 1085-1091

[12] George, R.; Nabwey, H. A.; Rajagopalan, R.; Radenovič, S.; Reshma, K. P. Rectangular cone $b$--metric spaces over Banach algebra and contraction principle, Fixed Point Theory Appl., Volume 2017 (2017), pp. 1-15 | DOI | Zbl

[13] Haghi, R. H.; Rezapour, S.; Shahzad, N. Some fixed point generalizations are not real generalizations, Nonlinear Anal., Volume 74 (2011), pp. 1799-1803 | Zbl | DOI

[14] Haghi, R. H.; Rezapour, S.; Shahzad, N. Be careful on partial metric fixed point results, Topology Appl., Volume 160 (2013), pp. 450-454 | Zbl | DOI

[15] Huang, H. P.; Radenovič, S. Some fixed point results of generalised Lipschitz mappings on cone b-metric spaces over Banach algebras, J. Comput. Anal. Appl., Volume 20 (2016), pp. 566-583

[16] Huang, L.-G.; Zhang, X. Cone metric spaces and fixed point theorem of contractive mappings, J. Math. Anal. Appl., Volume 332 (2007), pp. 1468-1476

[17] Kirk, W. A.; Srinivasan, P. S.; Veeramani, P. Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, Volume 4 (2003), pp. 79-89 | Zbl

[18] Liu, H.; Xu, S. Y. Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-10 | Zbl | DOI

[19] Malviya, N.; Fisher, B. $N$--cone metric space and fixed points of asymptotically regular maps, Filomat, Volume 2013 (2013), pp. 1-11

[20] Rudin, W. Functional Analysis, McGraw-Hill, New York, 1991 | Zbl

[21] Sharma, N. Fixed point theorem in cone $B$--metric spaces using contractive mappings, Global J. Pure Appl. Math., Volume 13 (2017), pp. 2997-3004

Cité par Sources :