$O_1$-convergence in partially ordered sets
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 10, p. 634-643.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Based on the introduction of notions of $S^*$-doubly continuous posets and B-topology in [T. Sun, Q. G. Li, L. K. Guo, Topology Appl., $\bf207$ (2016), 156--166], in this paper, we further propose the concept of B-consistent $S^*$-doubly continuous posets and prove that the $O_1$-convergence in a poset is topological if and only if the poset is a B-consistent $S^*$-doubly continuous poset. This is the main result which can be seen as a sufficient and necessary condition for the $O_1$-convergence in a poset being topological. Additionally, in order to present natural examples of posets which satisfy such condition, several special sub-classes of B-consistent $S^*$-doubly continuous posets are investigated.
DOI : 10.22436/jnsa.012.10.02
Classification : 54A20, 06A06
Keywords: \(O_1\)-convergence, B-topology, \(S^*\)-doubly continuous poset, B-consistent \(S^*\)-doubly continuous poset

Sun, Tao  1 ; Li, Qingguo  2 ; Fan, Nianbai  3

1 College of Mathematics and Physics, Hunan University of Arts and Science, Changde, Hunan 415000, P. R. China;College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, P. R. China
2 College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, P. R. China
3 College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
@article{JNSA_2019_12_10_a1,
     author = {Sun, Tao  and Li, Qingguo  and Fan, Nianbai },
     title = {\(O_1\)-convergence in partially ordered sets},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {634-643},
     publisher = {mathdoc},
     volume = {12},
     number = {10},
     year = {2019},
     doi = {10.22436/jnsa.012.10.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.02/}
}
TY  - JOUR
AU  - Sun, Tao 
AU  - Li, Qingguo 
AU  - Fan, Nianbai 
TI  - \(O_1\)-convergence in partially ordered sets
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 634
EP  - 643
VL  - 12
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.02/
DO  - 10.22436/jnsa.012.10.02
LA  - en
ID  - JNSA_2019_12_10_a1
ER  - 
%0 Journal Article
%A Sun, Tao 
%A Li, Qingguo 
%A Fan, Nianbai 
%T \(O_1\)-convergence in partially ordered sets
%J Journal of nonlinear sciences and its applications
%D 2019
%P 634-643
%V 12
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.02/
%R 10.22436/jnsa.012.10.02
%G en
%F JNSA_2019_12_10_a1
Sun, Tao ; Li, Qingguo ; Fan, Nianbai . \(O_1\)-convergence in partially ordered sets. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 10, p. 634-643. doi : 10.22436/jnsa.012.10.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.02/

[1] Birkhoff, G. Lattice Theory, American Mathematical Society, New York, 1940

[2] Dai, M. M.; Chen, H. Y.; Zheng, D. W. An introduction to axiomatic set theory (in chinese), Science Press, Beijing, 2011

[3] Davey, B. A.; Priestley, H. A. Introduction to Lattices and Order, Cambridge University Press, Cambridge, 2002 | Zbl | DOI

[4] Engelking, R. General Topology, PWN-Polish Scientific Publishers, Warszawa, 1977 | Zbl

[5] Frink, O. Topology in lattice, Trans. Amer. Math. Soc., Volume 51 (1942), pp. 569-582

[6] Grierz, G.; Hofmann, K. H.; Keimel, K.; Lawson, J. D.; Mislove, M. W.; Scott, D. S. Continuous Lattices and Domain, Camberidge University Press, Camberidge, 2003 | DOI

[7] Kelly, J. L. General Topology, Van Nostrand, New York, 1955

[8] Mathews, J. C.; Anderson, R. F. A comparison of two modes of order convergence, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 100-104 | Zbl

[9] Mcshane, E. J. Order--Preserving Maps and Integration Processes, Princeton University Press, Princeton, 1953 | Zbl

[10] Olejček, V. Order Convergence and Order Topology on a Poset, Internat. J. Theoret. Phys., Volume 38 (1999), pp. 557-561 | DOI | Zbl

[11] Riečanová, Z. Strongly compactly atomistic orthomodular lattices and modular ortholattices, Tatra Mt. Math. Publ., Volume 15 (1998), pp. 143-153 | Zbl

[12] Sun, T.; Li, Q. G.; Guo, L. K. Birkhoff's order--convergence in partially ordered sets, Topology Appl., Volume 207 (2016), pp. 156-166 | Zbl | DOI

[13] Wang, K. Y.; Zhao, B. Some further result on order--convergence in posets, Topology Appl., Volume 160 (2013), pp. 82-86 | DOI

[14] Wolk, E. S. On order--convergence, Proc. Amer. Math. Soc., Volume 12 (1961), pp. 379-384 | Zbl

[15] Zhang, H. A note on continuous partially ordered sets, Semigroup Forum, Volume 47 (1993), pp. 101-104 | DOI | Zbl

[16] Zhao, D. S. The double Scott topology on a lattice, Chin. Ann. Math. Ser. A, Volume 10 (1989), pp. 187-193

[17] Zhao, B.; Wang, K. Y. Order topology and bi-Scott topology on poset, Acta Math. Sin. (Engl. Ser.), Volume 27 (2011), pp. 2101-2106 | Zbl | DOI

[18] Zhao, B.; Zhao, D. S. Lim--inf--convergence in partially ordered sets, J. Math. Anal. Appl., Volume 309 (2005), pp. 701-708 | Zbl | DOI

[19] Zhou, Y. H.; Zhao, B. Order--convergence and Lim--inf$_{\mathcal{M}}$--convergence in poset, J. Math. Anal. Appl., Volume 325 (2007), pp. 655-664 | DOI

Cité par Sources :