Voir la notice de l'article provenant de la source International Scientific Research Publications
Sun, Tao  1 ; Li, Qingguo  2 ; Fan, Nianbai  3
@article{JNSA_2019_12_10_a1, author = {Sun, Tao and Li, Qingguo and Fan, Nianbai }, title = {\(O_1\)-convergence in partially ordered sets}, journal = {Journal of nonlinear sciences and its applications}, pages = {634-643}, publisher = {mathdoc}, volume = {12}, number = {10}, year = {2019}, doi = {10.22436/jnsa.012.10.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.02/} }
TY - JOUR AU - Sun, Tao AU - Li, Qingguo AU - Fan, Nianbai TI - \(O_1\)-convergence in partially ordered sets JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 634 EP - 643 VL - 12 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.02/ DO - 10.22436/jnsa.012.10.02 LA - en ID - JNSA_2019_12_10_a1 ER -
%0 Journal Article %A Sun, Tao %A Li, Qingguo %A Fan, Nianbai %T \(O_1\)-convergence in partially ordered sets %J Journal of nonlinear sciences and its applications %D 2019 %P 634-643 %V 12 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.02/ %R 10.22436/jnsa.012.10.02 %G en %F JNSA_2019_12_10_a1
Sun, Tao ; Li, Qingguo ; Fan, Nianbai . \(O_1\)-convergence in partially ordered sets. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 10, p. 634-643. doi : 10.22436/jnsa.012.10.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.02/
[1] Lattice Theory, American Mathematical Society, New York, 1940
[2] An introduction to axiomatic set theory (in chinese), Science Press, Beijing, 2011
[3] Introduction to Lattices and Order, Cambridge University Press, Cambridge, 2002 | Zbl | DOI
[4] General Topology, PWN-Polish Scientific Publishers, Warszawa, 1977 | Zbl
[5] Topology in lattice, Trans. Amer. Math. Soc., Volume 51 (1942), pp. 569-582
[6] Continuous Lattices and Domain, Camberidge University Press, Camberidge, 2003 | DOI
[7] General Topology, Van Nostrand, New York, 1955
[8] A comparison of two modes of order convergence, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 100-104 | Zbl
[9] Order--Preserving Maps and Integration Processes, Princeton University Press, Princeton, 1953 | Zbl
[10] Order Convergence and Order Topology on a Poset, Internat. J. Theoret. Phys., Volume 38 (1999), pp. 557-561 | DOI | Zbl
[11] Strongly compactly atomistic orthomodular lattices and modular ortholattices, Tatra Mt. Math. Publ., Volume 15 (1998), pp. 143-153 | Zbl
[12] Birkhoff's order--convergence in partially ordered sets, Topology Appl., Volume 207 (2016), pp. 156-166 | Zbl | DOI
[13] Some further result on order--convergence in posets, Topology Appl., Volume 160 (2013), pp. 82-86 | DOI
[14] On order--convergence, Proc. Amer. Math. Soc., Volume 12 (1961), pp. 379-384 | Zbl
[15] A note on continuous partially ordered sets, Semigroup Forum, Volume 47 (1993), pp. 101-104 | DOI | Zbl
[16] The double Scott topology on a lattice, Chin. Ann. Math. Ser. A, Volume 10 (1989), pp. 187-193
[17] Order topology and bi-Scott topology on poset, Acta Math. Sin. (Engl. Ser.), Volume 27 (2011), pp. 2101-2106 | Zbl | DOI
[18] Lim--inf--convergence in partially ordered sets, J. Math. Anal. Appl., Volume 309 (2005), pp. 701-708 | Zbl | DOI
[19] Order--convergence and Lim--inf$_{\mathcal{M}}$--convergence in poset, J. Math. Anal. Appl., Volume 325 (2007), pp. 655-664 | DOI
Cité par Sources :