Hybrid iterative methods for two asymptotically nonexpansive semigroups in Hilbert spaces
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 10, p. 621-633.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The main objective of this work is to modify two hybrid projection algorithm. First, we prove the strongly convergence to common fixed points of a sequence $\{x_{n}\}$ generated by the hybrid projection algorithm of two asymptotically nonexpansive mappings, second, we prove the strongly convergence of a sequence $\{x_{n}\}$ generated by the hybrid projection algorithm of two asymptotically nonexpansive semigroups. Our main results extend and improve the results of Dong et al. [Q.-L. Dong, S. N. He, Y. J. Cho, Fixed Point Theory Appl., $\textbf{2015}$ (2015), 12 pages].
DOI : 10.22436/jnsa.012.10.01
Classification : 46C05, 47D03, 47H09, 47H10, 47H20
Keywords: Asymptotically nonexpansive mappings, asymptotically nonexpansive semigroup, fixed point

Inchan, Issara  1

1 Department of Mathematics, Uttaradit Rajabhat University, Uttaradit, Thailand
@article{JNSA_2019_12_10_a0,
     author = {Inchan, Issara },
     title = {Hybrid iterative methods for two asymptotically nonexpansive semigroups in {Hilbert} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {621-633},
     publisher = {mathdoc},
     volume = {12},
     number = {10},
     year = {2019},
     doi = {10.22436/jnsa.012.10.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.01/}
}
TY  - JOUR
AU  - Inchan, Issara 
TI  - Hybrid iterative methods for two asymptotically nonexpansive semigroups in Hilbert spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 621
EP  - 633
VL  - 12
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.01/
DO  - 10.22436/jnsa.012.10.01
LA  - en
ID  - JNSA_2019_12_10_a0
ER  - 
%0 Journal Article
%A Inchan, Issara 
%T Hybrid iterative methods for two asymptotically nonexpansive semigroups in Hilbert spaces
%J Journal of nonlinear sciences and its applications
%D 2019
%P 621-633
%V 12
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.01/
%R 10.22436/jnsa.012.10.01
%G en
%F JNSA_2019_12_10_a0
Inchan, Issara . Hybrid iterative methods for two asymptotically nonexpansive semigroups in Hilbert spaces. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 10, p. 621-633. doi : 10.22436/jnsa.012.10.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.01/

[1] Dong, Q.-L.; He, S. N.; Cho, Y. J. A new hybrid algorithm and numerical realization for two nonexpansive mappings, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-12 | DOI | Zbl

[2] Goebel, K.; Kirk, W. A. A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Volume 35 (1972), pp. 171-174 | DOI

[3] Inchan, I.; Plubtieng, S. Strong convergence theorems of hybrid methods for two asymptotically nonexpansive mappings in Hilbert spaces, Nonlinear Anal. Hybrid Syst., Volume 2 (2008), pp. 1125-1135 | DOI | Zbl

[4] Ishikawa, S. Fixed points by a new iteration method, Proc. Amer. Math. Soc., Volume 44 (1974), pp. 147-150 | DOI | Zbl

[5] Kim, T.-H.; Xu, H.-K. Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear. Anal., Volume 64 (2006), pp. 1140-1152 | DOI | Zbl

[6] Lin, P.-K.; Tan, K.-K.; Xu, H. K. Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings, Nonlinear. Anal., Volume 24 (1995), pp. 929-946 | DOI | Zbl

[7] Mann, W. A. Mean value methods in iteration, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 506-510 | Zbl

[8] Martinez-Yanes, C.; Xu, H.-K. Strong convergence of the CQ method for fixed point processes, Nonlinear Anal., Volume 64 (2006), pp. 2400-2411 | DOI | Zbl

[9] Opial, Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 591-597 | Zbl

[10] Schu, J. Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Amer. Math. Soc., Volume 43 (1991), pp. 153-159 | Zbl | DOI

[11] Takahashi, W.; Takeuchi, Y.; Kubota, R. Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 341 (2008), pp. 276-286 | DOI | Zbl

[12] Xu, H.-K. Strong asymptotic behavior of almost-orbits of nonlinear semigroups, Nonlinear. Anal., Volume 46 (2001), pp. 135-151 | Zbl | DOI

Cité par Sources :