Voir la notice de l'article provenant de la source International Scientific Research Publications
Inchan, Issara  1
@article{JNSA_2019_12_10_a0, author = {Inchan, Issara }, title = {Hybrid iterative methods for two asymptotically nonexpansive semigroups in {Hilbert} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {621-633}, publisher = {mathdoc}, volume = {12}, number = {10}, year = {2019}, doi = {10.22436/jnsa.012.10.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.01/} }
TY - JOUR AU - Inchan, Issara TI - Hybrid iterative methods for two asymptotically nonexpansive semigroups in Hilbert spaces JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 621 EP - 633 VL - 12 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.01/ DO - 10.22436/jnsa.012.10.01 LA - en ID - JNSA_2019_12_10_a0 ER -
%0 Journal Article %A Inchan, Issara %T Hybrid iterative methods for two asymptotically nonexpansive semigroups in Hilbert spaces %J Journal of nonlinear sciences and its applications %D 2019 %P 621-633 %V 12 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.01/ %R 10.22436/jnsa.012.10.01 %G en %F JNSA_2019_12_10_a0
Inchan, Issara . Hybrid iterative methods for two asymptotically nonexpansive semigroups in Hilbert spaces. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 10, p. 621-633. doi : 10.22436/jnsa.012.10.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.10.01/
[1] A new hybrid algorithm and numerical realization for two nonexpansive mappings, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-12 | DOI | Zbl
[2] A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Volume 35 (1972), pp. 171-174 | DOI
[3] Strong convergence theorems of hybrid methods for two asymptotically nonexpansive mappings in Hilbert spaces, Nonlinear Anal. Hybrid Syst., Volume 2 (2008), pp. 1125-1135 | DOI | Zbl
[4] Fixed points by a new iteration method, Proc. Amer. Math. Soc., Volume 44 (1974), pp. 147-150 | DOI | Zbl
[5] Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear. Anal., Volume 64 (2006), pp. 1140-1152 | DOI | Zbl
[6] Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings, Nonlinear. Anal., Volume 24 (1995), pp. 929-946 | DOI | Zbl
[7] Mean value methods in iteration, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 506-510 | Zbl
[8] Strong convergence of the CQ method for fixed point processes, Nonlinear Anal., Volume 64 (2006), pp. 2400-2411 | DOI | Zbl
[9] Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 591-597 | Zbl
[10] Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Amer. Math. Soc., Volume 43 (1991), pp. 153-159 | Zbl | DOI
[11] Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 341 (2008), pp. 276-286 | DOI | Zbl
[12] Strong asymptotic behavior of almost-orbits of nonlinear semigroups, Nonlinear. Anal., Volume 46 (2001), pp. 135-151 | Zbl | DOI
Cité par Sources :