On the attractivity of an integrodifferential system with state-dependent delay
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 9, p. 611-620.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This work is focused on the existence and attractivity of mild solutions for an integrodifferential system with state-dependent delay. The results presented here were established by means of a fixed point theorem due to [T. A. Burton, C. Kirk, Math. Nachr., $\bf189$ (1998), 23--31]. At the end, the obtained results are illustrated by an example.
DOI : 10.22436/jnsa.012.09.06
Classification : 34G20, 34K10, 34K30
Keywords: Neutral functional integrodifferential equations, resolvent operator, mild solution, local attractivity, fixed point theory, infinite delay

Bete, Kora Hafiz  1 ; Ogouyandjou, Carlos  1 ; Diop, Amadou  2 ; Diop, Mamadou Abdoul  2

1 Universite d'Abomey-Calavi, Institut de Mathematiques et de Sciences Physiques, 01 B.P. 613, Porto-Novo, Benin
2 Universite Gaston Berger de Saint-Louis, UFR SAT, Departement de Mathematiques, B.P. 234, Saint-Louis, Senegal
@article{JNSA_2019_12_9_a5,
     author = {Bete, Kora Hafiz  and Ogouyandjou, Carlos  and Diop, Amadou  and Diop, Mamadou Abdoul },
     title = {On the attractivity of an integrodifferential  system with state-dependent delay},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {611-620},
     publisher = {mathdoc},
     volume = {12},
     number = {9},
     year = {2019},
     doi = {10.22436/jnsa.012.09.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.06/}
}
TY  - JOUR
AU  - Bete, Kora Hafiz 
AU  - Ogouyandjou, Carlos 
AU  - Diop, Amadou 
AU  - Diop, Mamadou Abdoul 
TI  - On the attractivity of an integrodifferential  system with state-dependent delay
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 611
EP  - 620
VL  - 12
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.06/
DO  - 10.22436/jnsa.012.09.06
LA  - en
ID  - JNSA_2019_12_9_a5
ER  - 
%0 Journal Article
%A Bete, Kora Hafiz 
%A Ogouyandjou, Carlos 
%A Diop, Amadou 
%A Diop, Mamadou Abdoul 
%T On the attractivity of an integrodifferential  system with state-dependent delay
%J Journal of nonlinear sciences and its applications
%D 2019
%P 611-620
%V 12
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.06/
%R 10.22436/jnsa.012.09.06
%G en
%F JNSA_2019_12_9_a5
Bete, Kora Hafiz ; Ogouyandjou, Carlos ; Diop, Amadou ; Diop, Mamadou Abdoul . On the attractivity of an integrodifferential  system with state-dependent delay. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 9, p. 611-620. doi : 10.22436/jnsa.012.09.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.06/

[1] Balachandran, K.; Kumar, R. R. Existence of solutions of integrodifferential evolution equations with time varying delays, Appl. Math. E-Notes, Volume 7 (2007), pp. 1-8 | Zbl

[2] Banaś, J.; Dhage, B. C. Global asymptotic stability of solutions of a functional integral equation, Nonlinear Anal., Volume 69 (2008), pp. 1945-1952 | DOI | Zbl

[3] equation, On existence and asymptotic stability of solutions of a nonlinear integral J. Banaś, B. Rzepka, J. Math. Anal. Appl., Volume 284 (2003), pp. 165-173 | Zbl | DOI

[4] Banaś, J.; Zaja̧c, T. Solvability of a functional integral equation of fractional order in the class of functions having limits at infinity, Nonlinear Anal., Volume 71 (2009), pp. 5491-5500 | DOI | Zbl

[5] Burton, T. A.; Kirk, C. A fixed point theorem of Krasnoselski--Schaefer type, Math. Nachr., Volume 189 (1998), pp. 23-31 | DOI

[6] Corduneanu, C. Integral equations and stability of feedback systems, Academic Press, New York-London, 1973 | Zbl

[7] Ezzinbi, K.; Ghnimi, S. Existence and regularity of solutions for neutral partial functional integrodifferential equations, Nonlinear Anal. Real World Appl., Volume 11 (2010), pp. 2335-2344 | DOI | Zbl

[8] Ezzinbi, K.; Ghnimi, S.; Taoudi, M. A. Existence and regularity of solutions for neutral partial functional integrodifferential equations with infinite delay, Nonlinear Anal. Hybrid Syst., Volume 4 (2010), pp. 54-64 | DOI | Zbl

[9] Ezzinbi, K.; Toure, H.; Zabsonre, I. Local existence and regularity of solutions for some partial functional integrodifferential equations with infinite delay in Banach space, Nonlinear Anal., Volume 70 (2009), pp. 3378-3389 | DOI

[10] Fujita, Y. Integrodifferential equation which interpolates the heat equation and tne wave equation, Osaka J. Math., Volume 27 (1990), pp. 309-321

[11] Grimmer, R. C. Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc., Volume 273 (1982), pp. 333-349 | DOI | Zbl

[12] Hale, J. K.; Kato, J. J. Phase spaces for retarded equations with infinite delay, Funkcial. Ekvac., Volume 21 (1978), pp. 11-41

[13] Hale, J. K.; Lunel, S. M. Verduyn Introduction to functional differential equations, Springer-Verlag, New York, 1993 | DOI | Zbl

[14] Hartung, F.; Turi, J. Identification of parameters in delay equations with state--dependent delays, Nonlinear Anal., Volume 29 (1997), pp. 1303-1318 | DOI | Zbl

[15] M., E. Hernández; McKibben, M. A. On state--dependent delay partial neutral functional--differential equations, Appl. Math. Comput., Volume 186 (2007), pp. 294-301 | Zbl | DOI

[16] Hino, Y.; Murakami, S.; Naito, T. Functional differential equations with unbounded delay, Springer-Verlag, Berlin, 1991

[17] Liang, J.; Liu, J. H.; Xiao, T.-J. Nonlocal impulsive problems for nonlinear differential equations in Banach spaces, Math. Comput. Modelling, Volume 49 (2009), pp. 798-804 | Zbl | DOI

[18] Lyapunov, A. M. The general problem of the stability of Motion (Translated by A. T. Fuller from Edouard Davaux's French translation (1907) of the 1892 Russian original), Internat. J. Control, Volume 55 (1992), pp. 531-534 | Zbl | DOI

[19] Mahmudov, N. I. Existence and uniqueness results for neutral SDEs in Hilbert spaces, Stoch. Anal. Appl., Volume 24 (2006), pp. 79-95 | DOI | Zbl

Cité par Sources :