Real fixed points and singular values of family of functions arising from generating function of unified generalized Apostol-type polynomials
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 9, p. 602-610.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Our main objective is to study the real fixed points and singular values of a two-parameter family of transcendental meromorphic functions $g_{\lambda,n}(z)=\lambda \frac{z}{(b^{z}-1)^{n}}$, $\lambda \in \mathbb{R} \backslash \{0\}$, $z \in \mathbb{C} \backslash \{0\}$, $n\in \mathbb{N} \backslash \{1\}$, $b>0$, $b\neq 1$ in the present paper which obtains from generating function of the unified generalized Apostol-type polynomials. The real fixed points of $g_{\lambda,n}(x)$, $x\in {\mathbb{R}}\setminus \{0\}$ with their stability are found for $n$ odd and $n$ even. It is shown that $g_{\lambda,n}(z)$ has infinite number of singular values. Further, it is seen that some critical values of $g_{\lambda,n}(z)$ lie in the closure of the disk and other lie in the exterior of the disk with center at the origin.
DOI : 10.22436/jnsa.012.09.05
Classification : 30D30, 37C25, 58K05
Keywords: Real fixed points, critical values, singular values, meromorphic function

Sajid, Mohammad  1

1 College of Engineering, Qassim University, Buraidah, Al-Qassim, Saudi Arabia
@article{JNSA_2019_12_9_a4,
     author = {Sajid, Mohammad },
     title = {Real fixed points and singular values of family of functions arising from generating function of unified generalized {Apostol-type} polynomials},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {602-610},
     publisher = {mathdoc},
     volume = {12},
     number = {9},
     year = {2019},
     doi = {10.22436/jnsa.012.09.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.05/}
}
TY  - JOUR
AU  - Sajid, Mohammad 
TI  - Real fixed points and singular values of family of functions arising from generating function of unified generalized Apostol-type polynomials
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 602
EP  - 610
VL  - 12
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.05/
DO  - 10.22436/jnsa.012.09.05
LA  - en
ID  - JNSA_2019_12_9_a4
ER  - 
%0 Journal Article
%A Sajid, Mohammad 
%T Real fixed points and singular values of family of functions arising from generating function of unified generalized Apostol-type polynomials
%J Journal of nonlinear sciences and its applications
%D 2019
%P 602-610
%V 12
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.05/
%R 10.22436/jnsa.012.09.05
%G en
%F JNSA_2019_12_9_a4
Sajid, Mohammad . Real fixed points and singular values of family of functions arising from generating function of unified generalized Apostol-type polynomials. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 9, p. 602-610. doi : 10.22436/jnsa.012.09.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.05/

[1] Chakra, T. K.; Nayak, T. Iteration of the translated tangent, Bull. Malays. Math. Sci. Soc., Volume 2017 (2017), pp. 1-16 | DOI

[2] Devaney, R. L. $S e^{x}$: dynamics, topology, and bifurcations of complex exponentials, Topology Appl., Volume 110 (2001), pp. 133-161 | Zbl

[3] Kapoor, G. P.; Prasad, M. G. P. Dynamics of $(e^{z} -1)/z$: the Julia set and bifurcation, Ergodic Theory Dynam. Systems, Volume 18 (1998), pp. 1363-1383 | DOI

[4] Lee, M. G.; Ho, C. C. Fixed points of two-parameter family of function $\lambda (\frac{x}{b^{x}-1})^{n}$, Appl. Math., Volume 6 (2015), pp. 576-584

[5] Nayak, T.; Prasad, M. G. P. Julia sets of Joukowski--Exponential maps, Complex Anal. Oper. Theory, Volume 8 (2014), pp. 1061-1076 | Zbl | DOI

[6] Radwan, A. G. On some generalized discrete logistic maps, J. Adv. Res., Volume 4 (2013), pp. 163-171 | DOI

[7] Rippon, P. J.; Stallard, G. M. Transcendental Dynamics and Complex Analysis, Cambridge University Press, Cambridge, 2008 | Zbl

[8] Sajid, M. On fixed points of one parameter family of function $\frac{x}{b^{x}-1}$ II, Int. J. Math. Anal. (Ruse), Volume 8 (2014), pp. 891-894 | Zbl

[9] Sajid, M. On real fixed points of one parameter family of function $\frac{x}{b^{x}-1}$, Tamkang J. Math., Volume 46 (2015), pp. 61-65 | Zbl

[10] Sajid, M. Singular Values of One Parameter Family $\lambda \frac{b^{z}-1}{z}$, J. Math. Comput. Sci., Volume 15 (2015), pp. 204-208

[11] Sajid, M. Singular values of one parameter family of generalized generating function of Bernoulli's numbers, Appl. Math. Inf. Sci., Volume 9 (2015), pp. 2921-2924

[12] Sajid, M. Real fixed points and dynamics of one parameter family of function $(b^{x}-1)/x$, J. Association Arab Uni. Basic Appl. Sci., Volume 21 (2016), pp. 92-95 | DOI

[13] Sajid, M. Real fixed points and singular values of two-parameter family $\lambda z/(e^{z}-1)^{n}$, New Trends Math. Sci., Volume 5 (2016), pp. 107-113

[14] Sajid, M. Singular values of two parameter families $\lambda{\bigg(\dfrac{b^{z}-1}{z}}\bigg)^{\mu}$ and $\lambda{\bigg(\dfrac{z}{b^{z}-1}}\bigg)^{\eta}$, J. Taibah Uni. Sci., Volume 11 (2017), pp. 324-327 | DOI

[15] Sajid, M. Bifurcation and chaos in real dynamics of a two-parameter family arising from generating function of generalized Apostol-type polynomials, Math. Comput. Appl., Volume 23 (2018), pp. 1-11 | DOI | Zbl

[16] Sajid, M.; Kapoor, G. P. Chaos in dynamics of a family of transcendental meromorphic functions, J. Nonlinear Anal. Appl., Volume 2017 (2017), pp. 1-11

[17] Sharifi, S.; Salimi, M.; Siegmund, S.; Lotfi, T. A new class of optimal four-point methods with convergence order 16 for solving nonlinear equations, Math. Comput. Simulation, Volume 119 (2016), pp. 69-90 | DOI

[18] Srivastava, H. M. Some generalizations and basic (or $q-$) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inf. Sci., Volume 5 (2011), pp. 390-444

[19] Zheng, J. H. On fixed-points and singular values of transcendental meromorphic functions, Sci. China Math., Volume 53 (2010), pp. 887-894 | DOI | Zbl

Cité par Sources :