Voir la notice de l'article provenant de la source International Scientific Research Publications
Sajid, Mohammad  1
@article{JNSA_2019_12_9_a4, author = {Sajid, Mohammad }, title = {Real fixed points and singular values of family of functions arising from generating function of unified generalized {Apostol-type} polynomials}, journal = {Journal of nonlinear sciences and its applications}, pages = {602-610}, publisher = {mathdoc}, volume = {12}, number = {9}, year = {2019}, doi = {10.22436/jnsa.012.09.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.05/} }
TY - JOUR AU - Sajid, Mohammad TI - Real fixed points and singular values of family of functions arising from generating function of unified generalized Apostol-type polynomials JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 602 EP - 610 VL - 12 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.05/ DO - 10.22436/jnsa.012.09.05 LA - en ID - JNSA_2019_12_9_a4 ER -
%0 Journal Article %A Sajid, Mohammad %T Real fixed points and singular values of family of functions arising from generating function of unified generalized Apostol-type polynomials %J Journal of nonlinear sciences and its applications %D 2019 %P 602-610 %V 12 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.05/ %R 10.22436/jnsa.012.09.05 %G en %F JNSA_2019_12_9_a4
Sajid, Mohammad . Real fixed points and singular values of family of functions arising from generating function of unified generalized Apostol-type polynomials. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 9, p. 602-610. doi : 10.22436/jnsa.012.09.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.05/
[1] Iteration of the translated tangent, Bull. Malays. Math. Sci. Soc., Volume 2017 (2017), pp. 1-16 | DOI
[2] $S e^{x}$: dynamics, topology, and bifurcations of complex exponentials, Topology Appl., Volume 110 (2001), pp. 133-161 | Zbl
[3] Dynamics of $(e^{z} -1)/z$: the Julia set and bifurcation, Ergodic Theory Dynam. Systems, Volume 18 (1998), pp. 1363-1383 | DOI
[4] Fixed points of two-parameter family of function $\lambda (\frac{x}{b^{x}-1})^{n}$, Appl. Math., Volume 6 (2015), pp. 576-584
[5] Julia sets of Joukowski--Exponential maps, Complex Anal. Oper. Theory, Volume 8 (2014), pp. 1061-1076 | Zbl | DOI
[6] On some generalized discrete logistic maps, J. Adv. Res., Volume 4 (2013), pp. 163-171 | DOI
[7] Transcendental Dynamics and Complex Analysis, Cambridge University Press, Cambridge, 2008 | Zbl
[8] On fixed points of one parameter family of function $\frac{x}{b^{x}-1}$ II, Int. J. Math. Anal. (Ruse), Volume 8 (2014), pp. 891-894 | Zbl
[9] On real fixed points of one parameter family of function $\frac{x}{b^{x}-1}$, Tamkang J. Math., Volume 46 (2015), pp. 61-65 | Zbl
[10] Singular Values of One Parameter Family $\lambda \frac{b^{z}-1}{z}$, J. Math. Comput. Sci., Volume 15 (2015), pp. 204-208
[11] Singular values of one parameter family of generalized generating function of Bernoulli's numbers, Appl. Math. Inf. Sci., Volume 9 (2015), pp. 2921-2924
[12] Real fixed points and dynamics of one parameter family of function $(b^{x}-1)/x$, J. Association Arab Uni. Basic Appl. Sci., Volume 21 (2016), pp. 92-95 | DOI
[13] Real fixed points and singular values of two-parameter family $\lambda z/(e^{z}-1)^{n}$, New Trends Math. Sci., Volume 5 (2016), pp. 107-113
[14] Singular values of two parameter families $\lambda{\bigg(\dfrac{b^{z}-1}{z}}\bigg)^{\mu}$ and $\lambda{\bigg(\dfrac{z}{b^{z}-1}}\bigg)^{\eta}$, J. Taibah Uni. Sci., Volume 11 (2017), pp. 324-327 | DOI
[15] Bifurcation and chaos in real dynamics of a two-parameter family arising from generating function of generalized Apostol-type polynomials, Math. Comput. Appl., Volume 23 (2018), pp. 1-11 | DOI | Zbl
[16] Chaos in dynamics of a family of transcendental meromorphic functions, J. Nonlinear Anal. Appl., Volume 2017 (2017), pp. 1-11
[17] A new class of optimal four-point methods with convergence order 16 for solving nonlinear equations, Math. Comput. Simulation, Volume 119 (2016), pp. 69-90 | DOI
[18] Some generalizations and basic (or $q-$) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inf. Sci., Volume 5 (2011), pp. 390-444
[19] On fixed-points and singular values of transcendental meromorphic functions, Sci. China Math., Volume 53 (2010), pp. 887-894 | DOI | Zbl
Cité par Sources :