Voir la notice de l'article provenant de la source International Scientific Research Publications
Alfifi, H. Y.  1
@article{JNSA_2019_12_9_a3, author = {Alfifi, H. Y. }, title = {Semi-analytical solutions for the delayed and diffusive viral infection model with logistic growth}, journal = {Journal of nonlinear sciences and its applications}, pages = {589-601}, publisher = {mathdoc}, volume = {12}, number = {9}, year = {2019}, doi = {10.22436/jnsa.012.09.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.04/} }
TY - JOUR AU - Alfifi, H. Y. TI - Semi-analytical solutions for the delayed and diffusive viral infection model with logistic growth JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 589 EP - 601 VL - 12 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.04/ DO - 10.22436/jnsa.012.09.04 LA - en ID - JNSA_2019_12_9_a3 ER -
%0 Journal Article %A Alfifi, H. Y. %T Semi-analytical solutions for the delayed and diffusive viral infection model with logistic growth %J Journal of nonlinear sciences and its applications %D 2019 %P 589-601 %V 12 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.04/ %R 10.22436/jnsa.012.09.04 %G en %F JNSA_2019_12_9_a3
Alfifi, H. Y. . Semi-analytical solutions for the delayed and diffusive viral infection model with logistic growth. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 9, p. 589-601. doi : 10.22436/jnsa.012.09.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.04/
[1] Semi-analytical solutions for the delayed diffusive food-limited model, 7th International Conference on Modeling, Simulation, and Applied Optimization ICMSAO (Sharjah, U. A. E.), Volume 2017 (2017), pp. 1-5 | DOI
[2] Semi-analytical solutions for the Brusselator reaction-diffusion model, ANZIAM J., Volume 59 (2017), pp. 167-182 | DOI | Zbl
[3] Feedback Control for a Diffusive Delay Logistic Equation: Semi-analytical Solutions, IAENG Int. J. Appl. Math., Volume 48 (2018), pp. 317-323
[4] Generalised diffusive delay logistic equations: semi-analytical solutions, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, Volume 19 (2012), pp. 579-596 | Zbl
[5] Semi-analytical solutions for the 1- and 2-D diffusive Nicholson's blowflies equation, IMA J. Appl. Math., Volume 79 (2014), pp. 175-199 | Zbl | DOI
[6] Non-smooth feedback control for Belousov--Zhabotinskii reaction--diffusion equations: semi-analytical solutions, J. Math Chem., Volume 54 (2016), pp. 1632-1657 | DOI | Zbl
[7] Mixed quadratic--cubic autocatalytic reaction--diffusion equations: semi-analytical solutions, Appl. Math. Model., Volume 38 (2014), pp. 5160-5173 | Zbl | DOI
[8] The diffusive Lotka--Volterra predator--prey system with delay, Math. Biosci., Volume 270 (2015), pp. 30-40 | Zbl | DOI
[9] Analysis of a HBV model with diffusion and time delay, J. Appl. Math., Volume 2012 (2012), pp. 1-25 | Zbl
[10] Applied Delay Differential Equations, Springer, New York, 2009 | Zbl
[11] Computational Galerkin Methods, Springer-Verlag, New York, 1984 | DOI | Zbl
[12] Theory of Functional Differential Equations, Springer-Verlag, New York-Heidelberg, 1977
[13] Global dynamics of a delay reaction-diffusion model for viral infection with specific functional response, Comput. Appl. Math., Volume 34 (2015), pp. 807-818 | DOI | Zbl
[14] A numerical method for delayed partial differential equations describing infectious diseases, Comput. Math. Appl., Volume 72 (2016), pp. 2741-2750 | Zbl | DOI
[15] The ancient Virus World and evolution of cells, Biol. Direct, Volume 1 (2006), pp. 1-27 | DOI
[16] A non-standard finite difference scheme for a diffusive HBV infection model with capsids and time delay, J. Difference Equ. Appl., Volume 23 (2017), pp. 1901-1911 | Zbl | DOI
[17] Cubic autocatalytic reaction diffusion equations: semi-analytical solutions, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., Volume 458 (2002), pp. 873-888 | Zbl | DOI
[18] Semi-analytical solution for one-and two-dimensional pellet problems, Proc. R. Soc. Lond., Volume 460 (2004), pp. 2381-2394 | DOI
[19] Global stability of a diffusive and delayed virus infection model with general incidence function and adaptive immune response, Comp. Appl. Math., Volume 37 (2018), pp. 3780-3805 | DOI | Zbl
[20] Viral dynamics in hepatitis B virus infection, Proc. Natl. Acad. Sci., Volume 93 (1996), pp. 4398-4402 | DOI
[21] Dynamics of the HBV Model with Diffusion and Time Delay, IEEE International Workshop on Chaos-Fractals Theories and Applications, Volume 2009 (2009), pp. 297-300 | DOI
[22] Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford University Press, New York, 1985 | Zbl
[23] Alphaherpesvirus axon-to-cell spread involves limited virion transmission, Proc. Natl. Acad. Sci., Volume 109 (2012), pp. 17046-17051 | DOI
[24] Propagation of HBV with spatial dependence, Math. Biosci., Volume 210 (2007), pp. 78-95 | Zbl | DOI
[25] Dynamics of an HBV model with diffusion and delay, J. Theoret. Biol., Volume 235 (2008), pp. 36-44 | Zbl | DOI
[26] An HBV model with diffusion and time delay, J. Theoret. Biol., Volume 257 (2009), pp. 499-509 | DOI | Zbl
[27] Spatiotemporal Dynamics of a Delayed and Diffusive Viral Infection Model with Logistic Growth, Math. Comput. Appl., Volume 22 (2017), pp. 1-19 | DOI
Cité par Sources :