Continuous dependence solutions for Hilfer fractional differential equations with nonlocal conditions
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 9, p. 573-581.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We discuss the existence, uniqueness and continuous dependence of solution for a non-autonomous semilinear Hilfer fractional differential equation with nonlocal conditions in the space of weighted continuous functions. By means of the Krasnoselskii's fixed point theorem and the generalized Gronwall's inequality, we establish the desired results.
DOI : 10.22436/jnsa.012.09.02
Classification : 26A33, 34A08, 34A12
Keywords: Hilfer fractional derivative, Krasnoselskii's fixed point theorem, Gronwall's inequality

Abbas, Mohamed I. 1

1 Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
@article{JNSA_2019_12_9_a1,
     author = {Abbas, Mohamed I.},
     title = {Continuous dependence solutions for {Hilfer}  fractional differential equations with nonlocal conditions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {573-581},
     publisher = {mathdoc},
     volume = {12},
     number = {9},
     year = {2019},
     doi = {10.22436/jnsa.012.09.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.02/}
}
TY  - JOUR
AU  - Abbas, Mohamed I.
TI  - Continuous dependence solutions for Hilfer  fractional differential equations with nonlocal conditions
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 573
EP  - 581
VL  - 12
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.02/
DO  - 10.22436/jnsa.012.09.02
LA  - en
ID  - JNSA_2019_12_9_a1
ER  - 
%0 Journal Article
%A Abbas, Mohamed I.
%T Continuous dependence solutions for Hilfer  fractional differential equations with nonlocal conditions
%J Journal of nonlinear sciences and its applications
%D 2019
%P 573-581
%V 12
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.02/
%R 10.22436/jnsa.012.09.02
%G en
%F JNSA_2019_12_9_a1
Abbas, Mohamed I. Continuous dependence solutions for Hilfer  fractional differential equations with nonlocal conditions. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 9, p. 573-581. doi : 10.22436/jnsa.012.09.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.02/

[1] Abbas, S.; Benchohra, M.; Bohner, M. Weak Solutions for Implicit Differential Equations with Hilfer-Hadamard Fractional Derivative, Adv. Dyn. Syst. Appl., Volume 12 (2017), pp. 1-16 | Zbl

[2] Abbas, S.; Benchohra, M.; Lazreg, J.-E.; Zhou, Y. A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability, Chaos Solitons Fractals, Volume 102 (2017), pp. 47-71 | Zbl | DOI

[3] Bragdi, M.; Hazi, M. Existence and controllability results for an evolution fractional integrodifferential systems, Int. J. Contemp. Math. Sci., Volume 5 (2010), pp. 901-910

[4] Debbouche, A.; Antonov, V. Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces, Chaos Solitons Fractals, Volume 102 (2017), pp. 140-148 | DOI

[5] Dhaigude, D. B.; Bhairat, S. P. Existence and uniqueness of solution of Cauchy-type problem for Hilfer fractional differential equations, Comm. Appl. Anal., Volume 22 (2018), pp. 121-134

[6] Fitzgibbon, W. E. Semilinear functional differential equations in Banach space, J. Differential Equations, Volume 29 (1978), pp. 1-14 | DOI | Zbl

[7] Friedman, A. Partial Differential Equations, Holt, Rinehat and Winston, New York, 1969 | Zbl

[8] Fu, X. L.; Liu, X. B. Existence of periodic solutions for abstract neutral non-autonomous equations with infinite delay, Math. Anal. Appl., Volume 325 (2007), pp. 249-267 | DOI

[9] Furati, K. M.; Kassim, M. D. ; Tatar, N. e-. Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., Volume 64 (2012), pp. 1616-1626 | Zbl | DOI

[10] Gou, H.; Li, B. Existence of mild solutions for fractional nonautonomous evolution equations of Sobolev type with delay, J. Inequal. Appl., Volume 2017 (2017), pp. 1-20 | Zbl | DOI

[11] Granas, A.; Dugundji, J. Fixed Point Theory, Springer-Verlag, New York, 2003 | Zbl | DOI

[12] Gu, H.; Trujillo, J. J. Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., Volume 257 (2015), pp. 344-354 | Zbl | DOI

[13] (ed.), R. Hilfer Applications of Fractional Calculus in Physics, World Sci. Publ., River Edge, 2000

[14] Hilfer, R. Fractional calculus and regular variation in thermodynamics, World Sci. Publ., River Edge, 2000 | Zbl | DOI

[15] Hilfer, R. Fractional time evolution, World Sci. Publ., River Edge, 2000 | DOI | Zbl

[16] Kamocki, R.; Obczynski, C. On fractional Cauchy-type problems containing Hilfer's derivative, Electron. J. Qual. Theory Differ. Equ., Volume 50 (2016), pp. 1-12 | Zbl

[17] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, 2006 | Zbl

[18] Li, F. Mild solutions for fractional differential equations with nonlocal conditions, Adv. Difference Equ., Volume 2010 (2010), pp. 1-9 | DOI | Zbl

[19] Mahmudov, N. I.; McKibben, M. A. On the Approximate Controllability of Fractional Evolution Equations with Generalized Riemann-Liouville Fractional Derivative, J. Funct. Spaces, Volume 2015 (2015), pp. 1-9 | Zbl

[20] Mei, Z.-D.; Peng, J.-G.; Gao, J.-H. Existence and uniqueness of solutions for nonlinear general fractional differential equations in Banach spaces, Indag. Math. (N.S.), Volume 26 (2015), pp. 669-678 | DOI | Zbl

[21] Mei, Z.-D.; Peng, J.-G.; Gao, J.-H. General fractional differential equations of order $\alpha\in(1, 2)$ and Type $\beta\in[0, 1]$ in Banach spaces, Semigroup Forum, Volume 94 (2017), pp. 712-737 | Zbl | DOI

[22] Mophou, G. M.; N'Guérékata, G. M. Mild solutions for semilinear fractional differential equations, Electron. J. Differential Equations, Volume 21 (2009), pp. 1-9 | EuDML | Zbl

[23] Pazy, A. Semigroup of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983 | DOI

[24] Tomovski, Ž.; Hilfer, R.; Srivastava, H. M. Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms Spec. Funct., Volume 21 (2010), pp. 797-814 | DOI | Zbl

[25] Vivek, D.; Kanagarajan, K.; Elsayed, E. M. Some Existence and Stability Results for Hilfer-fractional Implicit Differential Equations with Nonlocal Conditions, Mediterr. J. Math., Volume 15 (2018), pp. 1-21 | Zbl | DOI

[26] Vivek, D.; Kanagarajan, K.; Sivasundaram, S. Dynamics and Stability Results for Hilfer Fractional Type Thermistor Problem, Fractal Fractional, Volume 2017 (2017), pp. 80-93

[27] Wang, J. R.; Zhang, Y. Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., Volume 266 (2015), pp. 850-859 | DOI | Zbl

[28] Yang, M.; Wang, Q.-R. Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions, Math. Methods Appl. Sci., Volume 40 (2017), pp. 1126-1138 | DOI | Zbl

[29] Ye, H. P.; Gao, J. M.; Ding, Y. S. A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., Volume 328 (2007), pp. 1075-1081 | DOI | Zbl

Cité par Sources :