Stability analysis of the generalized fractional differential equations with and without exogenous inputs
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 9, p. 562-572.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The stability conditions of the fractional differential equations described by the Caputo generalized fractional derivative have been addressed. The generalized asymptotic stability of a class of the fractional differential equations has been investigated. The fractional input stability in the context of the fractional differential equations described by the Caputo generalized fractional derivative has been introduced. The Lyapunov characterizations of the generalized asymptotic stability and the generalized fractional input stability of the fractional differential equations with or without inputs have been provided. Several examples illustrating the main results of the paper have been proposed. The Caputo generalized fractional derivative and the generalized Gronwall lemma have been used.
DOI : 10.22436/jnsa.012.09.01
Classification : 93D05, 26A33, 93D25
Keywords: Caputo generalized fractional derivative, asymptotic stability, fractional differential equations

Sene, Ndolane  1

1 Laboratoire Lmdan, Departement de Mathematiques de la Decision, Universite Cheikh Anta Diop de Dakar, BP 5683 Dakar Fann, Senegal
@article{JNSA_2019_12_9_a0,
     author = {Sene, Ndolane },
     title = {Stability analysis of the generalized fractional differential equations with and without exogenous inputs},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {562-572},
     publisher = {mathdoc},
     volume = {12},
     number = {9},
     year = {2019},
     doi = {10.22436/jnsa.012.09.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.01/}
}
TY  - JOUR
AU  - Sene, Ndolane 
TI  - Stability analysis of the generalized fractional differential equations with and without exogenous inputs
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 562
EP  - 572
VL  - 12
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.01/
DO  - 10.22436/jnsa.012.09.01
LA  - en
ID  - JNSA_2019_12_9_a0
ER  - 
%0 Journal Article
%A Sene, Ndolane 
%T Stability analysis of the generalized fractional differential equations with and without exogenous inputs
%J Journal of nonlinear sciences and its applications
%D 2019
%P 562-572
%V 12
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.01/
%R 10.22436/jnsa.012.09.01
%G en
%F JNSA_2019_12_9_a0
Sene, Ndolane . Stability analysis of the generalized fractional differential equations with and without exogenous inputs. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 9, p. 562-572. doi : 10.22436/jnsa.012.09.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.01/

[1] Adjabi, Y.; Jarad, F.; Abdeljawad, T. On generalized fractional operators and a Gronwall type inequality with applications, Filomat, Volume 31 (2017), pp. 5457-5473 | Zbl | DOI

[2] Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, arXiv, Volume 2016 (2016), pp. 1-8

[3] Atangana, A.; Koca, I. New direction in fractional differentiation, Math. Nat. Sci., Volume 1 (2017), pp. 18-25

[4] Baleanu, D.; Golmankhaneh, A. K.; Golmankhaneh, A. K. The dual action of fractional multi time hamilton equations, Int. J. Theor. Phys., Volume 48 (2009), pp. 2558-2569 | Zbl | DOI

[5] Baleanu, D.; Wu, G.-C.; Zeng, S.-D. Chaos analysis and asymptotic stability of generalized caputo fractional differential equations, Chaos Solitons Fractals, Volume 102 (2017), pp. 99-105 | Zbl | DOI

[6] Makhlouf, A. Ben Stability with respect to part of the variables of nonlinear Caputo fractional differential equations, Math. Commun., Volume 23 (2018), pp. 119-126 | Zbl

[7] Camacho, N. A.; Mermoud, M. A. D.; Gallegos, J. A. Lyapunov functions for fractional order systems, Commun. Nonli. Sci. Numer. Simulat., Volume 19 (2014), pp. 2951-2957 | DOI

[8] Jarad, F.; Abdeljawad, T. A modified laplace transform for certain generalized fractional operators, Results Nonlinear Anal., Volume 2 (2018), pp. 88-98

[9] Jarad, F.; Abdeljawad, T.; Baleanu, D. On the generalized fractional derivatives and their caputo modification, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 2607-2619

[10] Jarad, F.; Uğurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators, Adv. Difference Equ., Volume 1 (2017), pp. 1-16 | DOI | Zbl

[11] Katugampola, U. N. New approach to a generalized fractional integral, Appl. Math. Comput., Volume 218 (2011), pp. 860-865 | Zbl | DOI

[12] Katugampola, U. N. A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., Volume 6 (2014), pp. 1-15 | Zbl

[13] Li, Y.; Chen, Y. Q.; Podlubny, I. Mittag--leffler stability of fractional order nonlinear dynamic systems, Automatica, Volume 45 (2009), pp. 1965-1969 | DOI | Zbl

[14] Priyadharsini, S. Stability of fractional neutral and integrodifferential systems, J. Fract. Calc. Appl., Volume 7 (2016), pp. 87-102

[15] Sene, N. Exponential form for lyapunov function and stability analysis of the fractional differential equations, J. Math. Computer Sci., Volume 18 (2018), pp. 388-397

[16] Sene, N. Lyapunov characterization of the fractional nonlinear systems with exogenous input, Fractal Fract., Volume 2 (2018), pp. 1-10 | DOI

[17] Sene, N. Analytical solutions of Hristov diffusion equations with non-singular fractional derivatives, Chaos, Volume 29 (2019), pp. 1-11 | Zbl

[18] Sene, N. Fractional input stability and its application to neural network, Discrete Contin. Dyn. Syst. Ser. S, Volume 13 (2019), pp. 853-865

[19] Sene, N. Fractional input stability for electrical circuits described by the Riemann-Liouville and the Caputo fractional derivatives, AIMS Math., Volume 4 (2019), pp. 147-165

[20] Sene, N. On stability analysis of the fractional nonlinear systems with hurwitz state matrix, J. Fract. Calc. Appl., Volume 10 (2019), pp. 1-9

[21] Sene, N. Solution of fractional diffusion equations and Cattaneo-Hristov diffusion model, Int. J. Anal. Appl., Volume 17 (2019), pp. 191-207

[22] Sontag, E. D.; Wang, Y. On characterizations of the input-to-state stability property, Systems Control Lett., Volume 24 (1995), pp. 351-359 | Zbl | DOI

[23] Souahi, A.; Makhlouf, A. Ben; Hammami, M. A. Stability analysis of conformable fractional-order nonlinear systems, Indag. Math. (N. S.), Volume 28 (2017), pp. 1265-1274 | DOI | Zbl

[24] Ye, H. P.; Gao, J. M.; Ding, Y. S. A generalized gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., Volume 328 (2007), pp. 1075-1081 | DOI | Zbl

[25] Zhang, F. R.; Chen, G. R.; Li, C. P.; Kurths, J. Chaos synchronization in fractional differential systems, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 371 (2013), pp. 1-26 | Zbl

Cité par Sources :