Voir la notice de l'article provenant de la source International Scientific Research Publications
Sene, Ndolane  1
@article{JNSA_2019_12_9_a0, author = {Sene, Ndolane }, title = {Stability analysis of the generalized fractional differential equations with and without exogenous inputs}, journal = {Journal of nonlinear sciences and its applications}, pages = {562-572}, publisher = {mathdoc}, volume = {12}, number = {9}, year = {2019}, doi = {10.22436/jnsa.012.09.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.01/} }
TY - JOUR AU - Sene, Ndolane TI - Stability analysis of the generalized fractional differential equations with and without exogenous inputs JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 562 EP - 572 VL - 12 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.01/ DO - 10.22436/jnsa.012.09.01 LA - en ID - JNSA_2019_12_9_a0 ER -
%0 Journal Article %A Sene, Ndolane %T Stability analysis of the generalized fractional differential equations with and without exogenous inputs %J Journal of nonlinear sciences and its applications %D 2019 %P 562-572 %V 12 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.01/ %R 10.22436/jnsa.012.09.01 %G en %F JNSA_2019_12_9_a0
Sene, Ndolane . Stability analysis of the generalized fractional differential equations with and without exogenous inputs. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 9, p. 562-572. doi : 10.22436/jnsa.012.09.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.09.01/
[1] On generalized fractional operators and a Gronwall type inequality with applications, Filomat, Volume 31 (2017), pp. 5457-5473 | Zbl | DOI
[2] New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, arXiv, Volume 2016 (2016), pp. 1-8
[3] New direction in fractional differentiation, Math. Nat. Sci., Volume 1 (2017), pp. 18-25
[4] The dual action of fractional multi time hamilton equations, Int. J. Theor. Phys., Volume 48 (2009), pp. 2558-2569 | Zbl | DOI
[5] Chaos analysis and asymptotic stability of generalized caputo fractional differential equations, Chaos Solitons Fractals, Volume 102 (2017), pp. 99-105 | Zbl | DOI
[6] Stability with respect to part of the variables of nonlinear Caputo fractional differential equations, Math. Commun., Volume 23 (2018), pp. 119-126 | Zbl
[7] Lyapunov functions for fractional order systems, Commun. Nonli. Sci. Numer. Simulat., Volume 19 (2014), pp. 2951-2957 | DOI
[8] A modified laplace transform for certain generalized fractional operators, Results Nonlinear Anal., Volume 2 (2018), pp. 88-98
[9] On the generalized fractional derivatives and their caputo modification, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 2607-2619
[10] On a new class of fractional operators, Adv. Difference Equ., Volume 1 (2017), pp. 1-16 | DOI | Zbl
[11] New approach to a generalized fractional integral, Appl. Math. Comput., Volume 218 (2011), pp. 860-865 | Zbl | DOI
[12] A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., Volume 6 (2014), pp. 1-15 | Zbl
[13] Mittag--leffler stability of fractional order nonlinear dynamic systems, Automatica, Volume 45 (2009), pp. 1965-1969 | DOI | Zbl
[14] Stability of fractional neutral and integrodifferential systems, J. Fract. Calc. Appl., Volume 7 (2016), pp. 87-102
[15] Exponential form for lyapunov function and stability analysis of the fractional differential equations, J. Math. Computer Sci., Volume 18 (2018), pp. 388-397
[16] Lyapunov characterization of the fractional nonlinear systems with exogenous input, Fractal Fract., Volume 2 (2018), pp. 1-10 | DOI
[17] Analytical solutions of Hristov diffusion equations with non-singular fractional derivatives, Chaos, Volume 29 (2019), pp. 1-11 | Zbl
[18] Fractional input stability and its application to neural network, Discrete Contin. Dyn. Syst. Ser. S, Volume 13 (2019), pp. 853-865
[19] Fractional input stability for electrical circuits described by the Riemann-Liouville and the Caputo fractional derivatives, AIMS Math., Volume 4 (2019), pp. 147-165
[20] On stability analysis of the fractional nonlinear systems with hurwitz state matrix, J. Fract. Calc. Appl., Volume 10 (2019), pp. 1-9
[21] Solution of fractional diffusion equations and Cattaneo-Hristov diffusion model, Int. J. Anal. Appl., Volume 17 (2019), pp. 191-207
[22] On characterizations of the input-to-state stability property, Systems Control Lett., Volume 24 (1995), pp. 351-359 | Zbl | DOI
[23] Stability analysis of conformable fractional-order nonlinear systems, Indag. Math. (N. S.), Volume 28 (2017), pp. 1265-1274 | DOI | Zbl
[24] A generalized gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., Volume 328 (2007), pp. 1075-1081 | DOI | Zbl
[25] Chaos synchronization in fractional differential systems, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 371 (2013), pp. 1-26 | Zbl
Cité par Sources :