On the Diamond Bessel Klein Gordon operator related to linear differential equation
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 8, p. 552-561.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, first, we study the Green function of the Diamond Klein Gordon Bessel operator iterated $k$ times. We give a sense of Distribution theory considering the properties of the convolution of the Green function. Finally, we solve the following equation
$ \left(\diamondsuit_{B}+d^{2}\right)^k u(x)=\sum^{m}_{r=0}c_{r}\left(\diamondsuit_{B}+d^{2}\right)^{k}\delta.$
It was found that the type of above equation depend on the relationship between the value $k$ and $m$.
DOI : 10.22436/jnsa.012.08.06
Classification : 46F10, 46F12
Keywords: Diamond Bessel operator, Diamond Klein Gordon Bessel operator, tempered distribution

Satsanit, Wanchak  1

1 Department of Mathematics, Faculty of Science, Maejo University, Chiang Mai, 50290, Thailand
@article{JNSA_2019_12_8_a5,
     author = {Satsanit, Wanchak },
     title = {On the {Diamond} {Bessel} {Klein} {Gordon}  operator related to linear differential equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {552-561},
     publisher = {mathdoc},
     volume = {12},
     number = {8},
     year = {2019},
     doi = {10.22436/jnsa.012.08.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.06/}
}
TY  - JOUR
AU  - Satsanit, Wanchak 
TI  - On the Diamond Bessel Klein Gordon  operator related to linear differential equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 552
EP  - 561
VL  - 12
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.06/
DO  - 10.22436/jnsa.012.08.06
LA  - en
ID  - JNSA_2019_12_8_a5
ER  - 
%0 Journal Article
%A Satsanit, Wanchak 
%T On the Diamond Bessel Klein Gordon  operator related to linear differential equation
%J Journal of nonlinear sciences and its applications
%D 2019
%P 552-561
%V 12
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.06/
%R 10.22436/jnsa.012.08.06
%G en
%F JNSA_2019_12_8_a5
Satsanit, Wanchak . On the Diamond Bessel Klein Gordon  operator related to linear differential equation. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 8, p. 552-561. doi : 10.22436/jnsa.012.08.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.06/

[1] Bunpog, C.; Kananthai, A. On the Bessel Diamond operator, J. Appl. Functional Anal., Volume 2009 (2009), pp. 10-19

[2] Donoghue, W. F. Distributions and Fourier Transform, Academic Press, New York, 1969

[3] Kananthai, A. On the Solution of the n-Dimensional Diamond Operator, Appl. Math. Comput., Volume 88 (1997), pp. 27-37 | DOI

[4] Manuel, A.; Aguirre, T. Some properties of Bessel Elliptic kernel and Bessel ultra-hyperbolic kernel, Thai J. Math., Volume 6 (2008), pp. 171-190

[5] Nozaki, Y. On Riemann-Liouville integral of Ultra-hyperbolic type, Kōdai Math. Sem. Rep., Volume 16 (1964), pp. 69-87 | Zbl

[6] Trione, S. E. On Marcel Riesz's ultrahyperbolic kernel, Stud. Appl. Math., Volume 79 (1988), pp. 185-191 | Zbl | DOI

[7] Yildirim, H. Riesz potentials generated by a generalized shift operator, Ph.D. Thesis, Ankara University, Ankara, 1995

[8] Yildirim, H.; Sarikaya, M. Z.; Öztürk, S. The solution of the n-dimensional Bessel diamond operator and the Fourier-Bessel transform of their convolution, Proc. Indian Acad. Sci. Math. Sci., Volume 114 (2004), pp. 375-387 | DOI

Cité par Sources :