The odd Fréchet inverse exponential distribution with application
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 8, p. 535-542.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We introduce a new distribution with two parameters called the odd Fréchet inverse exponential (OFIE) distribution. The OFIE model can be more flexible. The cumulative density function (cdf) and the probability density function (pdf) are investigated. Some of its statistical properties are studied. The maximum likelihood (ML) estimation is employed for OFIE parameters. The importance of the OFIE model is assessed using one real data set.
DOI : 10.22436/jnsa.012.08.04
Classification : 60E05, 62E10, 62N05
Keywords: Odd Fréchet family, inverse exponential distribution, moments, maximum likelihood

Alrajhi, Sharifah  1

1 Statistics Department, Faculty of Science, King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia
@article{JNSA_2019_12_8_a3,
     author = {Alrajhi, Sharifah },
     title = {The odd {Fr\'echet} inverse exponential distribution with application},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {535-542},
     publisher = {mathdoc},
     volume = {12},
     number = {8},
     year = {2019},
     doi = {10.22436/jnsa.012.08.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.04/}
}
TY  - JOUR
AU  - Alrajhi, Sharifah 
TI  - The odd Fréchet inverse exponential distribution with application
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 535
EP  - 542
VL  - 12
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.04/
DO  - 10.22436/jnsa.012.08.04
LA  - en
ID  - JNSA_2019_12_8_a3
ER  - 
%0 Journal Article
%A Alrajhi, Sharifah 
%T The odd Fréchet inverse exponential distribution with application
%J Journal of nonlinear sciences and its applications
%D 2019
%P 535-542
%V 12
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.04/
%R 10.22436/jnsa.012.08.04
%G en
%F JNSA_2019_12_8_a3
Alrajhi, Sharifah . The odd Fréchet inverse exponential distribution with application. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 8, p. 535-542. doi : 10.22436/jnsa.012.08.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.04/

[1] Afify, A. Z.; Nofal, Z. M.; Butt, N. S. Transmuted complementary Weibull geometric distribution, Pak. J. Stat. Oper. Res., Volume 10 (2014), pp. 435-454

[2] Afify, A. Z.; Nofal, Z. M.; Ebraheim, A. N. Exponentiated transmuted generalized Rayleigh distribution: A new four parameter Rayleigh distribution, Pak. J. Stat. Oper. Res., Volume 11 (2015), pp. 115-134

[3] Almalki, S. J.; Yuan, J. S. A new modified Weibull distribution, Reliab. Eng. Syst. Safety, Volume 111 (2013), pp. 164-170 | DOI

[4] Cordeiro, G. M.; Hashimoto, E. M.; Ortega, E. M. M. The McDonald Weibull model, Statistics, Volume 48 (2014), pp. 256-278 | Zbl

[5] Elbatal, I.; Gebaly, Y. M. El; Amin, E. A. The beta generalized inverse Weibull geometric distribution and its applications, Pak. J. Stat. Oper. Res., Volume 13 (2017), pp. 75-90

[6] Gross, A. J.; Clark, V. A. Survival distributions: Reliability applications in the biomedical sciences, John Wiley \& Sons, New York, 1975 | Zbl

[7] Haq, M.; Elgarhy, M. The odd Fr\'{e}chet-G family of probability distributions, J. Stat. Appl. Probab., Volume 7 (2018), pp. 185-201

[8] Keller, A. Z.; Kamath, A. R. R.; Perera, U. D. Reliability analysis of CNC Machine Tools, Reliab. Eng., Volume 3 (1982), pp. 449-473 | DOI

[9] Lee, C.; Famoye, F.; Olumolade, O. Beta-Weibull distribution: Some properties and applications to censored data, J. Modern Appl. Stat. Methods, Volume 6 (2007), pp. 173-186

[10] Lin, C. T.; Duran, B. S.; Lewis, T. O. Inverted Gamma as a life distribution, Microelectronics Reliab., Volume 29 (1989), pp. 619-626 | DOI

[11] Oguntunde, P. E.; Adejumo, A. O.; Owoloko, E. A. Application of Kumaraswamy inverse exponential distribution to real lifetime data, Int. J. Appl. Math. Stat., Volume 56 (2017), pp. 34-47

[12] Oguntunde, P. E.; Adejumo, A. O.; Owoloko, E. A. On the flexibility of the transmuted inverse exponential distribution, Proceeding of the World Congress on Engineering (London, UK), Volume 2017 (2017), pp. 123-126

[13] Oguntunde, P. E.; Adejumo, A. O.; Owoloko, E. A. On the exponentiated generalized inverse exponential distribution, Proceeding of the World Congress on Engineering (London, UK), Volume 2017 (2017), pp. 80-83

[14] Oguntunde, P. E.; Adejumo, A. O.; Owoloko, E. A. The Weibull-inverted exponential distribution: A generalization of the inverse exponential distribution, Proceeding of the World Congress on Engineering (London, UK), Volume 2017 (2017), pp. 16-19

[15] Singh, B.; Goel, R. The beta inverted exponential distribution: Properties and applications, Int. J. Applied Sci. Math., Volume 2 (2015), pp. 132-141

[16] Singh, S. K.; Singh, U.; Kumar, M. Estimation of Parameters of Generalized Inverted Exponential Distribution for Progressive Type-II Censored Sample with Binomial Removals, J. Probab. Stat., Volume 2013 (2013), pp. 1-12 | Zbl

[17] Tahir, M. H.; Mansoor, M.; Zubair, M.; Hamedani, G. McDonald loglogistic distribution with an application to breast cancer data, J. Stat. Theory Appl., Volume 13 (2014), pp. 65-82 | DOI

Cité par Sources :