Voir la notice de l'article provenant de la source International Scientific Research Publications
Alrajhi, Sharifah  1
@article{JNSA_2019_12_8_a3, author = {Alrajhi, Sharifah }, title = {The odd {Fr\'echet} inverse exponential distribution with application}, journal = {Journal of nonlinear sciences and its applications}, pages = {535-542}, publisher = {mathdoc}, volume = {12}, number = {8}, year = {2019}, doi = {10.22436/jnsa.012.08.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.04/} }
TY - JOUR AU - Alrajhi, Sharifah TI - The odd Fréchet inverse exponential distribution with application JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 535 EP - 542 VL - 12 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.04/ DO - 10.22436/jnsa.012.08.04 LA - en ID - JNSA_2019_12_8_a3 ER -
%0 Journal Article %A Alrajhi, Sharifah %T The odd Fréchet inverse exponential distribution with application %J Journal of nonlinear sciences and its applications %D 2019 %P 535-542 %V 12 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.04/ %R 10.22436/jnsa.012.08.04 %G en %F JNSA_2019_12_8_a3
Alrajhi, Sharifah . The odd Fréchet inverse exponential distribution with application. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 8, p. 535-542. doi : 10.22436/jnsa.012.08.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.04/
[1] Transmuted complementary Weibull geometric distribution, Pak. J. Stat. Oper. Res., Volume 10 (2014), pp. 435-454
[2] Exponentiated transmuted generalized Rayleigh distribution: A new four parameter Rayleigh distribution, Pak. J. Stat. Oper. Res., Volume 11 (2015), pp. 115-134
[3] A new modified Weibull distribution, Reliab. Eng. Syst. Safety, Volume 111 (2013), pp. 164-170 | DOI
[4] The McDonald Weibull model, Statistics, Volume 48 (2014), pp. 256-278 | Zbl
[5] The beta generalized inverse Weibull geometric distribution and its applications, Pak. J. Stat. Oper. Res., Volume 13 (2017), pp. 75-90
[6] Survival distributions: Reliability applications in the biomedical sciences, John Wiley \& Sons, New York, 1975 | Zbl
[7] The odd Fr\'{e}chet-G family of probability distributions, J. Stat. Appl. Probab., Volume 7 (2018), pp. 185-201
[8] Reliability analysis of CNC Machine Tools, Reliab. Eng., Volume 3 (1982), pp. 449-473 | DOI
[9] Beta-Weibull distribution: Some properties and applications to censored data, J. Modern Appl. Stat. Methods, Volume 6 (2007), pp. 173-186
[10] Inverted Gamma as a life distribution, Microelectronics Reliab., Volume 29 (1989), pp. 619-626 | DOI
[11] Application of Kumaraswamy inverse exponential distribution to real lifetime data, Int. J. Appl. Math. Stat., Volume 56 (2017), pp. 34-47
[12] On the flexibility of the transmuted inverse exponential distribution, Proceeding of the World Congress on Engineering (London, UK), Volume 2017 (2017), pp. 123-126
[13] On the exponentiated generalized inverse exponential distribution, Proceeding of the World Congress on Engineering (London, UK), Volume 2017 (2017), pp. 80-83
[14] The Weibull-inverted exponential distribution: A generalization of the inverse exponential distribution, Proceeding of the World Congress on Engineering (London, UK), Volume 2017 (2017), pp. 16-19
[15] The beta inverted exponential distribution: Properties and applications, Int. J. Applied Sci. Math., Volume 2 (2015), pp. 132-141
[16] Estimation of Parameters of Generalized Inverted Exponential Distribution for Progressive Type-II Censored Sample with Binomial Removals, J. Probab. Stat., Volume 2013 (2013), pp. 1-12 | Zbl
[17] McDonald loglogistic distribution with an application to breast cancer data, J. Stat. Theory Appl., Volume 13 (2014), pp. 65-82 | DOI
Cité par Sources :