Voir la notice de l'article provenant de la source International Scientific Research Publications
Kermausuor, Seth  1
@article{JNSA_2019_12_8_a1, author = {Kermausuor, Seth }, title = {Generalized {Ostrowski-type} inequalities involving second derivatives via the {Katugampola} fractional integrals}, journal = {Journal of nonlinear sciences and its applications}, pages = {509-522}, publisher = {mathdoc}, volume = {12}, number = {8}, year = {2019}, doi = {10.22436/jnsa.012.08.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.02/} }
TY - JOUR AU - Kermausuor, Seth TI - Generalized Ostrowski-type inequalities involving second derivatives via the Katugampola fractional integrals JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 509 EP - 522 VL - 12 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.02/ DO - 10.22436/jnsa.012.08.02 LA - en ID - JNSA_2019_12_8_a1 ER -
%0 Journal Article %A Kermausuor, Seth %T Generalized Ostrowski-type inequalities involving second derivatives via the Katugampola fractional integrals %J Journal of nonlinear sciences and its applications %D 2019 %P 509-522 %V 12 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.02/ %R 10.22436/jnsa.012.08.02 %G en %F JNSA_2019_12_8_a1
Kermausuor, Seth . Generalized Ostrowski-type inequalities involving second derivatives via the Katugampola fractional integrals. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 8, p. 509-522. doi : 10.22436/jnsa.012.08.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.02/
[1] Ostrowski type inequalities for the functions whose derivative are $s$-convex in second sense, Appl. Math. Lett., Volume 23 (2010), pp. 1071-1076 | DOI
[2] Ostrowski type inequalities, Proc. Amer. Math. Soc., Volume 123 (1995), pp. 3775-3781 | DOI
[3] Hermite-Hadamard-Fejér type inequalities for strongly $(s,m)$-convex functions with modulus $c$, in second sense, Appl. Math. Inf. Sci., Volume 10 (2016), pp. 2045-2053
[4] Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen (German), Publ. Inst. Math. (Beograd) (N.S.), Volume 23 (1978), pp. 13-20 | Zbl
[5] Hermite--Hadamard and Hermite--Hadamard--Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., Volume 446 (2017), pp. 1274-1291 | Zbl | DOI
[6] A generalization of Ostrowski integral inequality for mappings whose derivatives belong to $L_1[a,b]$ and applications in numerical integration, J. Comput. Anal. Appl., Volume 3 (2001), pp. 343-360 | DOI
[7] A generalization of the Ostrowski integral inequality for mappings whose derivatives belong to $L_p[a,b]$ and applications in numerical integration, J. Math. Anal. Appl., Volume 255 (2001), pp. 605-626 | DOI | Zbl
[8] A new inequality of Ostrowski's type in $ L_1$-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. Math., Volume 28 (1997), pp. 239-244
[9] A new inequality of Ostrowski’s type in $L_p$-norm, Indian J. Math., Volume 40 (1998), pp. 299-304
[10] Some remarks on $(s, m)$-convexity in the second sense, J. Math. Inequal., Volume 8 (2014), pp. 489-495
[11] Ostrowski type fractional integral inequalities for $s$-Godunova--Levin functions via Katugampola fractional integrals, Open J. Math. Sci., Volume 1 (2017), pp. 97-110
[12] Ostrowski-type fractional integral inequalities for mappings whose derivatives are $h$-convex via Katugampola fractional integrals, Stud. Univ. Babeş-Bolyai Math., Volume 63 (2018), pp. 465-474
[13] Ostrowski type $k$-fractional integral inequalities for MT-convex and $h$-convex functions, Nonlinear funct. Anal. Appl., Volume 22 (2017), pp. 627-639 | Zbl
[14] New approach to a generalized fractional integral, Appl. Math. Comput., Volume 218 (2011), pp. 860-865 | Zbl | DOI
[15] A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., Volume 6 (2014), pp. 1-15 | Zbl
[16] Some new Ostrowski type inequalities for functions whose second derivative are $h$-convex via Riemann--Liouville fractional, Malaya J. Mat., Volume 2 (2014), pp. 445-459
[17] Uber die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmitelwert, Comment. Math. Helv., Volume 10 (1938), pp. 226-227
[18] Fractional differential equations, Academic Press, San Diego, 1999 | Zbl
[19] Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl., Volume 7 (1966), pp. 72-75 | Zbl
[20] Fractional Integrals and Derivatives: Theory and applications, Gordon and Breach Science Publishers, Yverdon, 1993 | Zbl
[21] New inequalities of Ostrowski type for mappings whose derivatives are $s$-convex in the second sense via fractional integrals, Comput. Math. Appl., Volume 63 (2012), pp. 1147-1154 | Zbl | DOI
[22] Hermite--Hadamard Type Inequalities for Quasi-Convex Functions via Katugampola Fractional Integrals, Int. J. Anal. Appl., Volume 16 (2018), pp. 605-613 | Zbl
[23] Some generalizations of the Convexity, Proc. Colloq. Approx. Optim. Cluj-Naploca (Cluj-Napoca, 1985), Volume 1985 (1985), pp. 329-338 | Zbl
Cité par Sources :