Voir la notice de l'article provenant de la source International Scientific Research Publications
Arenas-Díaz, Gilberto 1 ; Quintero, José R. 2
@article{JNSA_2019_12_7_a5, author = {Arenas-D{\'\i}az, Gilberto and Quintero, Jos\'e R.}, title = {On positive travelling wave solutions for a general class of {KdV-Burger} type equation}, journal = {Journal of nonlinear sciences and its applications}, pages = {485-502}, publisher = {mathdoc}, volume = {12}, number = {7}, year = {2019}, doi = {10.22436/jnsa.012.07.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.07.06/} }
TY - JOUR AU - Arenas-Díaz, Gilberto AU - Quintero, José R. TI - On positive travelling wave solutions for a general class of KdV-Burger type equation JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 485 EP - 502 VL - 12 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.07.06/ DO - 10.22436/jnsa.012.07.06 LA - en ID - JNSA_2019_12_7_a5 ER -
%0 Journal Article %A Arenas-Díaz, Gilberto %A Quintero, José R. %T On positive travelling wave solutions for a general class of KdV-Burger type equation %J Journal of nonlinear sciences and its applications %D 2019 %P 485-502 %V 12 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.07.06/ %R 10.22436/jnsa.012.07.06 %G en %F JNSA_2019_12_7_a5
Arenas-Díaz, Gilberto; Quintero, José R. On positive travelling wave solutions for a general class of KdV-Burger type equation. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 7, p. 485-502. doi : 10.22436/jnsa.012.07.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.07.06/
[1] Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980
[2] Positive solutions of singular nonlinear boundary value problems, J. Comput. Appl. Math., Volume 113 (2000), pp. 381-399 | DOI
[3] Une remarque sur la méthode de Banach--Cacciopoli--Tikhonov dans la théorie des équations différentielles ordinaires, Bull. Acad. Polon. Sci., Volume 4 (1956), pp. 261-264
[4] On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., Volume 120 (1994), pp. 743-748 | Zbl | DOI
[5] Bateman Manuscript Project, California Institute of Technology, McGraw-Hill, New York, 1954
[6] Multiple solutions of two-point boundary value problems of ordinary differential equations in Banach spaces, J. Math. Anal. Appl., Volume 129 (1988), pp. 211-222 | DOI | Zbl
[7] Nonlinear Problems in Abstract Cones, Academic Press, Boston, 1988 | Zbl
[8] Analytical solutions of long nonlinear internal waves: Part I, Nat. Hazards, Volume 5 (2011), pp. 597-607 | DOI
[9] Positive solutions for nonlinear eigenvalue problems, J. Math. Anal. Appl., Volume 208 (1997), pp. 252-259 | DOI
[10] Positive solutions of operator equations: edited by Leo F. Boron, P. Noordhok Ltd., Groningen, 1964
[11] On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions, J. Comput. Appl. Math., Volume 132 (2001), pp. 341-356 | DOI | Zbl
[12] Positive periodic solutions of delay differential equations, Appl. Math. Lett., Volume 26 (2013), pp. 1141-1145 | DOI
[13] Existence of one-signed periodic solutions of some second-order differential equations via a krasnoselskii fixed point theorem, J. Differential Equations, Volume 190 (2003), pp. 643-662 | Zbl | DOI
[14] Guided waves in a multi-layered optical structure, Nonlinearity, Volume 19 (2006), pp. 2103-2113 | Zbl
[15] Sur l'existence des solutions d'une équation intégro--différentielle, Ann. Polon. Math., Volume 27 (1973), pp. 181-187 | Zbl
[16] On positive solutions of boundary value problems on the half-line, J. Math. Anal. Appl., Volume 259 (2001), pp. 127-136 | DOI | Zbl
Cité par Sources :