On positive travelling wave solutions for a general class of KdV-Burger type equation
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 7, p. 485-502.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we establish the existence of positive traveling waves solutions for the third order differential equation $u_{t}+\alpha u_{xx}+\beta u_{xxx}+\left(f\left(x,u(x)\right)\right)_{x}=0$, where $t,x\in\bf R$, $f$ is a non-negative continuous function with some properties. The result is a consequence of the characterization of the travelling wave solutions as fixed points of some functional, defined using the Green's function associated to the linear problem, and the Krasnosel'skii fixed point theorem on cone expansion and compression of norm type.
DOI : 10.22436/jnsa.012.07.06
Classification : 34G20, 35C07, 74J35
Keywords: Travelling wave solutions, Green function, Krasnosel'skii fixed point theorem

Arenas-Díaz, Gilberto 1 ; Quintero, José R. 2

1 Escuela de Matematicas, Universidad Industrial de Santander, A.A. 678, Bucaramanga, Colombia
2 Departamento de Matematicas, Universidad del Valle, A.A. 25360, Cali, Colombia
@article{JNSA_2019_12_7_a5,
     author = {Arenas-D{\'\i}az, Gilberto and Quintero, Jos\'e R.},
     title = {On positive travelling wave solutions for a general class of {KdV-Burger} type equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {485-502},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2019},
     doi = {10.22436/jnsa.012.07.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.07.06/}
}
TY  - JOUR
AU  - Arenas-Díaz, Gilberto
AU  - Quintero, José R.
TI  - On positive travelling wave solutions for a general class of KdV-Burger type equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 485
EP  - 502
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.07.06/
DO  - 10.22436/jnsa.012.07.06
LA  - en
ID  - JNSA_2019_12_7_a5
ER  - 
%0 Journal Article
%A Arenas-Díaz, Gilberto
%A Quintero, José R.
%T On positive travelling wave solutions for a general class of KdV-Burger type equation
%J Journal of nonlinear sciences and its applications
%D 2019
%P 485-502
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.07.06/
%R 10.22436/jnsa.012.07.06
%G en
%F JNSA_2019_12_7_a5
Arenas-Díaz, Gilberto; Quintero, José R. On positive travelling wave solutions for a general class of KdV-Burger type equation. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 7, p. 485-502. doi : 10.22436/jnsa.012.07.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.07.06/

[1] Banaś, J.; Goebel, K. Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980

[2] Baxley, J. V.; Martin, J. C. Positive solutions of singular nonlinear boundary value problems, J. Comput. Appl. Math., Volume 113 (2000), pp. 381-399 | DOI

[3] Bielecki, A. Une remarque sur la méthode de Banach--Cacciopoli--Tikhonov dans la théorie des équations différentielles ordinaires, Bull. Acad. Polon. Sci., Volume 4 (1956), pp. 261-264

[4] Erbe, L. H.; Wang, H. Y. On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., Volume 120 (1994), pp. 743-748 | Zbl | DOI

[5] Erdélyi, A. Bateman Manuscript Project, California Institute of Technology, McGraw-Hill, New York, 1954

[6] Guo, D. J.; Lakshmikantham, V. Multiple solutions of two-point boundary value problems of ordinary differential equations in Banach spaces, J. Math. Anal. Appl., Volume 129 (1988), pp. 211-222 | DOI | Zbl

[7] Guo, D. J.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones, Academic Press, Boston, 1988 | Zbl

[8] Hamdi, S.; Morse, B.; Halpen, B.; Schiesser, W. Analytical solutions of long nonlinear internal waves: Part I, Nat. Hazards, Volume 5 (2011), pp. 597-607 | DOI

[9] Henderson, J.; Wang, H. Y. Positive solutions for nonlinear eigenvalue problems, J. Math. Anal. Appl., Volume 208 (1997), pp. 252-259 | DOI

[10] Krasnoselʹskiĭ, M. A. Positive solutions of operator equations: edited by Leo F. Boron, P. Noordhok Ltd., Groningen, 1964

[11] Merdivenci-Atici, F.; Guseinov, G. S. On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions, J. Comput. Appl. Math., Volume 132 (2001), pp. 341-356 | DOI | Zbl

[12] Olach, R. Positive periodic solutions of delay differential equations, Appl. Math. Lett., Volume 26 (2013), pp. 1141-1145 | DOI

[13] Torres, P. J. Existence of one-signed periodic solutions of some second-order differential equations via a krasnoselskii fixed point theorem, J. Differential Equations, Volume 190 (2003), pp. 643-662 | Zbl | DOI

[14] Torres, P. J. Guided waves in a multi-layered optical structure, Nonlinearity, Volume 19 (2006), pp. 2103-2113 | Zbl

[15] Zima, K. Sur l'existence des solutions d'une équation intégro--différentielle, Ann. Polon. Math., Volume 27 (1973), pp. 181-187 | Zbl

[16] Zima, M. On positive solutions of boundary value problems on the half-line, J. Math. Anal. Appl., Volume 259 (2001), pp. 127-136 | DOI | Zbl

Cité par Sources :