Optimization of two-step block method with three hybrid points for solving third order initial value problems
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 7, p. 450-469.

Voir la notice de l'article provenant de la source International Scientific Research Publications

An optimized two-step hybrid block method for the numerical solution of third-order initial value problems is presented. The method takes into regard three hybrid points which are selected suitably to optimize the local truncation errors of the main formulas for the block. The method is zero-stable and consistent with sixth algebraic order. Some numerical examples are debated to demonstrate the efficiency and the accuracy of the proposed method.
DOI : 10.22436/jnsa.012.07.04
Classification : 34A38, 65C20, 93C30
Keywords: Two-step hybrid block method, third-order initial value problems, stability, consistent

Kashkari, Bothayna S. H.  1 ; Alqarni, Sadeem  2

1 Department of Mathematics, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
2 Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia;Department of Mathematics, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
@article{JNSA_2019_12_7_a3,
     author = {Kashkari, Bothayna S. H.  and Alqarni, Sadeem },
     title = {Optimization of two-step block method with three hybrid points for solving third order initial value problems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {450-469},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2019},
     doi = {10.22436/jnsa.012.07.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.07.04/}
}
TY  - JOUR
AU  - Kashkari, Bothayna S. H. 
AU  - Alqarni, Sadeem 
TI  - Optimization of two-step block method with three hybrid points for solving third order initial value problems
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 450
EP  - 469
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.07.04/
DO  - 10.22436/jnsa.012.07.04
LA  - en
ID  - JNSA_2019_12_7_a3
ER  - 
%0 Journal Article
%A Kashkari, Bothayna S. H. 
%A Alqarni, Sadeem 
%T Optimization of two-step block method with three hybrid points for solving third order initial value problems
%J Journal of nonlinear sciences and its applications
%D 2019
%P 450-469
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.07.04/
%R 10.22436/jnsa.012.07.04
%G en
%F JNSA_2019_12_7_a3
Kashkari, Bothayna S. H. ; Alqarni, Sadeem . Optimization of two-step block method with three hybrid points for solving third order initial value problems. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 7, p. 450-469. doi : 10.22436/jnsa.012.07.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.07.04/

[1] Abdulqadri, B.; Ibrahim, Y. S.; Adesanya, A. O. Hybrid one step block method for the solution of third order initial value problems of ordinary differential equations, Int. J. Appl. Math. Comput, Volume 6 (2014), pp. 10-16

[2] Adesanya, A. O.; Udo, M. O.; A. M. Alkali A new block-predictor corrector algorithm for the solution of \(y''' = f(x, y, y', y'')\), American J. Comput. Math., Volume 2 (2012), pp. 341-344

[3] Adesanya, A. O.; Udoh, D. M.; Ajileye, A. A new hybrid block method for the solution of general third order initial value problems of ordinary differential equations, Int. J. Pure. Appl. Math., Volume 86 (2013), pp. 365-375

[4] Anake, T. A.; Awoyemi, D. O.; A. O. Adesanya One-step implicit hybrid block method for the direct solution of general second order ordinary differential equations, IAENG Int. J. Appl. Math., Volume 42 (2012), pp. 224-228

[5] D. O. Awoyemi A P-stable linear multistep method for solving general third order ordinary differential equations, Int. J. Comput. Math., Volume 80 (2003), pp. 987-993 | Zbl | DOI

[6] Chu, M. T.; Hamilton, H. Parallel solution of ode’s by multiblock methods, SIAM J. Sci. Stat. Comput., Volume 8 (1987), pp. 342-353 | DOI

[7] G. Dahlquist Convergence and stability in the numerical integration of ordinary differential equations, Math. Scand., Volume 4 (1956), pp. 33-53 | DOI

[8] Fasasi, K. M. New continuous hybrid constant block method for the solution of third order initial value problem of ordinary differential equations, Academic J. Appl. Math. Sci., Volume 4 (2018), pp. 53-60

[9] Fasasi, K. M.; Adesanya, A. O.; Adee, S. O. One step continuous hybrid block method for the solution of\( y''' = f(x, y, y', y'')\), J. Natural Sciences Research, Volume 4 (2014), pp. 55-62

[10] Hijazi, M.; Abdelrahim, R. The numerical computation of three step hybrid block method for directly solving third order ordinary differential equations, Global J. Pure. Appl. Math., Volume 13 (2017), pp. 89-103

[11] Z. B. Ibrahim Block multistep methods for solving ordinary differential equations, Ph.D. thesis, Universiti Putra Malaysia, 2006

[12] Jator, S. N. A sixth order linear multistep method for the direct solution of \(y'' = f(x, y, y')\), Int. J. Pure Appl. Math., Volume 40 (2007), pp. 457-472 | Zbl

[13] Lambert, J. D.; Watson, I. A. Symmetric multistip methods for periodic initial value problems, IMA J. Appl. Math., Volume 18 (1976), pp. 189-202 | DOI

[14] Milne, W. E. Numerical solution of differential equations, John Wiley & Sons, New York, 1953

[15] Fatunla, S. Ola Block methods for second order odes, Int. J. Comput. Math., Volume 41 (1991), pp. 55-63

[16] Olabode, B. T.; Yusuph, Y. A new block method for special third order ordinary differential equations, J. Math. Stat., Volume 5 (2009), pp. 167-170 | DOI | Zbl

[17] Omar, Z.; Sulaiman, M. Parallel r-point implicit block method for solving higher order ordinary differential equations directly, J. ICT, Volume 3 (2004), pp. 53-66

[18] Ramos, H.; Kalogiratou, Z.; Monovasilis, T.; Simos, T. E. An optimized two-step hybrid block method for solving general second order initial-value problems, Numer. Algorithms, Volume 72 (2016), pp. 1089-1102 | DOI | Zbl

[19] Shampine, L. F.; Watts, H. A. Block implicit one-step methods, Math. Comp., Volume 23 (1969), pp. 731-740 | DOI

[20] Yap, L. K.; Ismail, F.; Senu, N. An accurate block hybrid collocation method for third order ordinary differential equations, J. Appl. Math., Volume 2014 (2014), pp. 1-9

Cité par Sources :