Comparison of the best approximation of holomorphic functions from Hardy space
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 7, p. 412-419.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We compare the best approximations of holomorphic functions in the Hardy space $H^1$ by algebraic polynomials and trigonometric polynomials. Particulary, we establish a class of functions $f\in H^1$ for which the best trigonometric approximation do not coincide with the best algebraic approximation.
DOI : 10.22436/jnsa.012.07.01
Classification : 30C45, 30C50
Keywords: Best approximation, Hardy space, non-negative trigonometric polynomials

Abdullayev, F. G.  1 ; Savchuk, V. V.  2 ; Simsek, D.  3

1 Mersin University, Mersin, Turkey;Kyrgyz--Turkish Manas University, Bishkek, Kyrgyzstan
2 Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
3 Kyrgyz--Turkish Manas University, Bishkek, Kyrgyzstan
@article{JNSA_2019_12_7_a0,
     author = {Abdullayev, F. G.  and Savchuk, V. V.  and Simsek, D. },
     title = {Comparison of the best approximation of holomorphic functions from {Hardy} space},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {412-419},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2019},
     doi = {10.22436/jnsa.012.07.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.07.01/}
}
TY  - JOUR
AU  - Abdullayev, F. G. 
AU  - Savchuk, V. V. 
AU  - Simsek, D. 
TI  - Comparison of the best approximation of holomorphic functions from Hardy space
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 412
EP  - 419
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.07.01/
DO  - 10.22436/jnsa.012.07.01
LA  - en
ID  - JNSA_2019_12_7_a0
ER  - 
%0 Journal Article
%A Abdullayev, F. G. 
%A Savchuk, V. V. 
%A Simsek, D. 
%T Comparison of the best approximation of holomorphic functions from Hardy space
%J Journal of nonlinear sciences and its applications
%D 2019
%P 412-419
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.07.01/
%R 10.22436/jnsa.012.07.01
%G en
%F JNSA_2019_12_7_a0
Abdullayev, F. G. ; Savchuk, V. V. ; Simsek, D. . Comparison of the best approximation of holomorphic functions from Hardy space. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 7, p. 412-419. doi : 10.22436/jnsa.012.07.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.07.01/

[1] Abdullayev, F. G.; Abdullayev, G. A.; Savchuk, V. V. Best approximation of holomorphic functions from Hardy space in terms of Taylor coefficient (to appear in Filomat.)

[2] S. Y. Al’per On the Best Mean First-degree Approximation of Analytic Functions on Circle (Russian), Dokl. Akad. Nauk S.S.S.R., Volume 153 (1963), pp. 503-506

[3] Pekarskii, A. A. Comparison of the Best Uniform Approximations of Analytic Functions in the Disk and on Its Boundary (Russian), translated from Tr. Mat. Inst. Steklova, Volume 255 (2006), pp. 227-232 | Zbl | DOI

[4] Savchuk, V. V. Best Approximation of Cauchy–Szegö Kernel in the Mean on Circle (Ukrainian), Ukr. Mat. Zh., Volume 70 (2018), pp. 708-714 | DOI

[5] Savchuk, V. V.; Chaichenko, S. O. Addendum to a theorem of F. Wiener about sieve (Ukrainian), Praci Instytutu Matematyky NAN Ukrainy, Volume 12 (2015), pp. 262-272

[6] Savchuk, V. V.; Savchuk, M. V.; Chaichenko, S. O. Approximation of Analytic Functions byde Valle Poussin sums (Ukrainian), Matematychni Studii, Volume 34 (2010), pp. 207-219

Cité par Sources :