Voir la notice de l'article provenant de la source International Scientific Research Publications
Lateef, Durdana  1 ; Ahmad, Jamshaid  2
@article{JNSA_2019_12_6_a5, author = {Lateef, Durdana and Ahmad, Jamshaid }, title = {Dass and {Gupta's} fixed point theorem in {\(\mathcal{F}\)-metric} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {405-411}, publisher = {mathdoc}, volume = {12}, number = {6}, year = {2019}, doi = {10.22436/jnsa.012.06.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.06.06/} }
TY - JOUR AU - Lateef, Durdana AU - Ahmad, Jamshaid TI - Dass and Gupta's fixed point theorem in \(\mathcal{F}\)-metric spaces JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 405 EP - 411 VL - 12 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.06.06/ DO - 10.22436/jnsa.012.06.06 LA - en ID - JNSA_2019_12_6_a5 ER -
%0 Journal Article %A Lateef, Durdana %A Ahmad, Jamshaid %T Dass and Gupta's fixed point theorem in \(\mathcal{F}\)-metric spaces %J Journal of nonlinear sciences and its applications %D 2019 %P 405-411 %V 12 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.06.06/ %R 10.22436/jnsa.012.06.06 %G en %F JNSA_2019_12_6_a5
Lateef, Durdana ; Ahmad, Jamshaid . Dass and Gupta's fixed point theorem in \(\mathcal{F}\)-metric spaces. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 6, p. 405-411. doi : 10.22436/jnsa.012.06.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.06.06/
[1] Relation theoretic contraction results in F-metric spaces, J. Nonlinear Sci. Appl., Volume 12 (2019), pp. 337-344
[2] Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math., Volume 3 (1922), pp. 133-181
[3] An extension of Banach contraction principle through rational expression, Indian J. Pure Appl. Math., Volume 6 (1975), pp. 1455-1458
[4] Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, Tran. A. Razmadze Math. Inst., Volume 172 (2018), pp. 481-490 | DOI
[5] Some unique fixed point theorems, Indian J. Pure Appl. Math., Volume 8 (1977), pp. 223-230
[6] On a new generalization of Metric Spaces, J. Fixed Point Theory Appl., Volume 20 (2018), pp. 1-20 | DOI
[7] A fixed point theorem for metric spaces, Rend. Ist. Mat. Univ. Trieste, Volume 8 (1976), pp. 69-72
Cité par Sources :