Voir la notice de l'article provenant de la source International Scientific Research Publications
Jantakarn, Kittisak  1 ; Kaewcharoen, Anchalee  1
@article{JNSA_2019_12_6_a1, author = {Jantakarn, Kittisak and Kaewcharoen, Anchalee }, title = {Strong convergence theorems for mixed equilibrium problems and uniformly {Bregman} totally quasi-asymptotically nonexpansive mappings in reflexive {Banach} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {349-362}, publisher = {mathdoc}, volume = {12}, number = {6}, year = {2019}, doi = {10.22436/jnsa.012.06.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.06.02/} }
TY - JOUR AU - Jantakarn, Kittisak AU - Kaewcharoen, Anchalee TI - Strong convergence theorems for mixed equilibrium problems and uniformly Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 349 EP - 362 VL - 12 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.06.02/ DO - 10.22436/jnsa.012.06.02 LA - en ID - JNSA_2019_12_6_a1 ER -
%0 Journal Article %A Jantakarn, Kittisak %A Kaewcharoen, Anchalee %T Strong convergence theorems for mixed equilibrium problems and uniformly Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces %J Journal of nonlinear sciences and its applications %D 2019 %P 349-362 %V 12 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.06.02/ %R 10.22436/jnsa.012.06.02 %G en %F JNSA_2019_12_6_a1
Jantakarn, Kittisak ; Kaewcharoen, Anchalee . Strong convergence theorems for mixed equilibrium problems and uniformly Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 6, p. 349-362. doi : 10.22436/jnsa.012.06.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.06.02/
[1] From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145
[2] The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR. Comput. Math. Math. Phys., Volume 7 (1967), pp. 200-217 | DOI
[3] Totally convex functions for fixed points computation and infinite dimensional optimization, Academic press, Dordrecht, 2012 | DOI
[4] Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., Volume 2006 (2006), pp. 1-39 | Zbl
[5] A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., Volume 214 (2008), pp. 186-201 | DOI
[6] An iterative row-action method for interval convex programming, J. Optim. Theory Appl., Volume 34 (1981), pp. 321-353 | DOI | Zbl
[7] Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces, Appl. Math. Comput., Volume 228 (2014), pp. 38-48 | DOI | Zbl
[8] A new algorithm for mixed equilibrium problem and Bregman strongly nonexpansive mapping in Banach spaces, arXiv, Volume 2015 (2015), pp. 1-20
[9] Fixed point and weak convergence theorems for point-dependent \(\lambda\)-hybrid mappings in Banac spaces, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-15 | DOI
[10] Iterative methods for solving systems of variational inequalities in reflexive Banach spaces, SIAM. J. Optim., Volume 21 (2011), pp. 1319-1344 | Zbl | DOI
[11] Strong convergence theorems by Halpern-Mann iterations for relatively nonexpansive mappings in Banach spaces, Appl. Math. Comput., Volume 217 (2011), pp. 6577-6586 | DOI
[12] Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal., Volume 73 (2010), pp. 122-135 | Zbl | DOI
[13] Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim., Volume 31 (2010), pp. 22-44 | Zbl | DOI
[14] Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces, in: Fixed-Point Algorithms for Inverse Problemsin Science and Engineering, Academic Press, Volume 2011 (2011), pp. 301-316 | Zbl | DOI
[15] Halpern’s iteration for Bregman strongly nonexpansive mappings in reflexive Banach spaces, Comput. Math. Appl., Volume 64 (2012), pp. 489-499 | DOI
[16] Strong convergence iterative algorithms for equilibrium problems and fixed point problems in Banach spaces, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-9
[17] Strong convergence theorems for equilibrium problem and Bregman totally quasi-asymptotically nonexpansive mapping in Banach spaces, Acta Math. Sci. Ser. B (Engl. Ed.), Volume 36 (2016), pp. 1433-1444 | DOI | Zbl
Cité par Sources :