Voir la notice de l'article provenant de la source International Scientific Research Publications
Alnaser, Laila A.  1 ; Lateef, Durdana 1 ; Fouad, Hoda A.  2 ; Ahmad, Jamshaid  3
@article{JNSA_2019_12_5_a5, author = {Alnaser, Laila A. and Lateef, Durdana and Fouad, Hoda A. and Ahmad, Jamshaid }, title = {Relation theoretic contraction results in {\(\mathcal{F}\)-metric} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {337-344}, publisher = {mathdoc}, volume = {12}, number = {5}, year = {2019}, doi = {10.22436/jnsa.012.05.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.06/} }
TY - JOUR AU - Alnaser, Laila A. AU - Lateef, Durdana AU - Fouad, Hoda A. AU - Ahmad, Jamshaid TI - Relation theoretic contraction results in \(\mathcal{F}\)-metric spaces JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 337 EP - 344 VL - 12 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.06/ DO - 10.22436/jnsa.012.05.06 LA - en ID - JNSA_2019_12_5_a5 ER -
%0 Journal Article %A Alnaser, Laila A. %A Lateef, Durdana %A Fouad, Hoda A. %A Ahmad, Jamshaid %T Relation theoretic contraction results in \(\mathcal{F}\)-metric spaces %J Journal of nonlinear sciences and its applications %D 2019 %P 337-344 %V 12 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.06/ %R 10.22436/jnsa.012.05.06 %G en %F JNSA_2019_12_5_a5
Alnaser, Laila A. ; Lateef, Durdana; Fouad, Hoda A. ; Ahmad, Jamshaid . Relation theoretic contraction results in \(\mathcal{F}\)-metric spaces. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 5, p. 337-344. doi : 10.22436/jnsa.012.05.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.06/
[1] Fixed point results for \(\{\alpha,\xi\}\)-expansive locally contractive mappings , J. Inequal. Appl., Volume 2014 (2014), pp. 1-10 | DOI | Zbl
[2] New Fixed Point Theorems for Generalized F–Contractions in Complete Metric Spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-18 | Zbl | DOI
[3] Relation-theoretic contraction principle, J. Fixed Point Theory Appl., Volume 17 (2015), pp. 693-702 | DOI | Zbl
[4] Some new fixed point theorems for compatible mappings in partial metric spaces, J. Math. Computer Sci., Volume 18 (2018), pp. 346-356
[5] Common Fixed Point Theorems for JS- Contractions, Bull. Math. Anal. Appl., Volume 8 (2016), pp. 12-22
[6] New common fixed point theorems for cyclic compatible contractions, J. Math. Anal., Volume 8 (2017), pp. 1-12
[7] Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math., Volume 3 (1922), pp. 133-181
[8] Solving a class of matrix equations via the Bhaskar-Lakshmikantham coupled fixed point theorem, Appl. Math. Lett., Volume 25 (2012), pp. 1638-1643 | Zbl | DOI
[9] Solving systems of nonlinear matrix equations involving lipshitzian mappings, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-10 | DOI | Zbl
[10] On fixed and periodic points under contractive mappings, J. London Math. Soc., Volume 37 (1962), pp. 74-79 | DOI
[11] Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, Trans. A. Razmadze Math. Ins., Volume 172 (2018), pp. 481-490 | DOI
[12] Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-17 | DOI
[13] Fixed Points of Multivalued Non-Linear F–Contractions with Application to Solution of Matrix Equations, Filomat, Volume 31 (2017), pp. 3319-3333 | DOI
[14] On a new generalization of Metric Spaces, J. Fixed Point Theory Appl., Volume 20 (2018), pp. 1-20 | DOI
[15] Discrete Mathematical Structures, 3rd ed., PHI Pvt. Ltd., New Delhi, 2000
[16] Common Fixed Point Theorems For Generalized Contractions, J. Math. Anal., Volume 8 (2017), pp. 157-166
[17] Schaums Outlines of Theory and Problems of Set Theory and Related Topics, McGraw-Hill, New York, 1964
[18] On the hermitian positive defnite solution of the nonlinear matrix equation \(x + a^*x - 1a + b^*x - 1 b = i\) , Bull. Braz. Math. Soc., Volume 39 (2008), pp. 371-386 | Zbl | DOI
[19] Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, Volume 22 (2005), pp. 223-239 | DOI | Zbl
[20] Fixed points of a \(\Theta\)–contraction on metric spaces with a graph, Commun. Nonlinear Anal., Volume 2 (2016), pp. 139-149 | DOI
[21] A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., Volume 2004 (2004), pp. 1435-1443 | Zbl | DOI
[22] Common fixed point results for new Ciric-type rational multivalued F–contraction with an application, J. Fixed Point Theory Appl., Volume 20 (2018), pp. 1-16 | Zbl | DOI
[23] A unified version of Ran and Reurings theorem and Nieto and Rodríguez-Lópezs theorem and low-dimensional generalizations, Appl. Math. Inf. Sci., Volume 10 (2016), pp. 383-393 | DOI
[24] Coupled fixed point, F–invariant set and fixed point of N-order, Ann. Funct. Anal., Volume 1 (2010), pp. 46-56 | Zbl | DOI
[25] Fixed point theorems for FR–contractions with applications to solution of nonlinear matrix equations, J. Fixed Point Theory Appl., Volume 19 (2017), pp. 1711-1725 | DOI
[26] Generalized Dynamic Process for Generalized Multivalued F–contraction of Hardy Rogers Type in b-metric Spaces, Turkish J. Anal. Number Theory, Volume 6 (2018), pp. 43-48 | DOI
[27] Ran-Reurings fixed point results in ordered metric spaces, Libertas Math., Volume 31 (2011), pp. 49-55
[28] Nieto-Lopez theorems in ordered metric spaces, Math. Student, Volume 81 (2012), pp. 219-229 | Zbl
Cité par Sources :