Relation theoretic contraction results in $\mathcal{F}$-metric spaces
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 5, p. 337-344.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Jleli and Samet in [M. Jleli, B. Samet, J. Fixed Point Theory Appl., $\textbf{20}$ (2018), 20 pages] introduced a new metric space named as $\mathcal{F}$-metric space. They presented a new version of the Banach contraction principle in the context of this generalized metric spaces. The aim of this article is to define relation theoretic contraction and prove some generalized fixed point theorems in $\mathcal{F}$-metric spaces. Our results extend, generalize, and unify several known results in the literature.
DOI : 10.22436/jnsa.012.05.06
Classification : 47H10, 47H06
Keywords: \(\mathcal{F}\)-metric space, relation theoretic contractions, fixed point, binary relation

Alnaser, Laila A.  1 ; Lateef, Durdana 1 ; Fouad, Hoda A.  2 ; Ahmad, Jamshaid  3

1 Department of Mathematics, College of Science, Taibah University, Al Madina Al Munawara, 41411, Kingdom of Saudi Arabia
2 Department of Mathematics, College of Science, Taibah University, Al Madina Al Munawara, 41411, Kingdom of Saudi Arabia;Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria, Egypt
3 Department of Mathematics, University of Jeddah, P. O. Box 80327, Jeddah 21589, Saudi Arabia
@article{JNSA_2019_12_5_a5,
     author = {Alnaser, Laila A.  and Lateef, Durdana and Fouad, Hoda A.  and Ahmad, Jamshaid },
     title = {Relation theoretic contraction results in {\(\mathcal{F}\)-metric} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {337-344},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2019},
     doi = {10.22436/jnsa.012.05.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.06/}
}
TY  - JOUR
AU  - Alnaser, Laila A. 
AU  - Lateef, Durdana
AU  - Fouad, Hoda A. 
AU  - Ahmad, Jamshaid 
TI  - Relation theoretic contraction results in \(\mathcal{F}\)-metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 337
EP  - 344
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.06/
DO  - 10.22436/jnsa.012.05.06
LA  - en
ID  - JNSA_2019_12_5_a5
ER  - 
%0 Journal Article
%A Alnaser, Laila A. 
%A Lateef, Durdana
%A Fouad, Hoda A. 
%A Ahmad, Jamshaid 
%T Relation theoretic contraction results in \(\mathcal{F}\)-metric spaces
%J Journal of nonlinear sciences and its applications
%D 2019
%P 337-344
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.06/
%R 10.22436/jnsa.012.05.06
%G en
%F JNSA_2019_12_5_a5
Alnaser, Laila A. ; Lateef, Durdana; Fouad, Hoda A. ; Ahmad, Jamshaid . Relation theoretic contraction results in \(\mathcal{F}\)-metric spaces. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 5, p. 337-344. doi : 10.22436/jnsa.012.05.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.06/

[1] Ahmad, J.; Al-Rawashdeh, A.; Azam, A. Fixed point results for \(\{\alpha,\xi\}\)-expansive locally contractive mappings , J. Inequal. Appl., Volume 2014 (2014), pp. 1-10 | DOI | Zbl

[2] Ahmad, J.; Al-Rawashdeh, A.; Azam, A. New Fixed Point Theorems for Generalized F–Contractions in Complete Metric Spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-18 | Zbl | DOI

[3] Alam, A.; Imdad, M. Relation-theoretic contraction principle, J. Fixed Point Theory Appl., Volume 17 (2015), pp. 693-702 | DOI | Zbl

[4] Alnaser, L. A.; Lateef, D.; Ahmad, J. Some new fixed point theorems for compatible mappings in partial metric spaces, J. Math. Computer Sci., Volume 18 (2018), pp. 346-356

[5] Al-Rawashdeh, A.; J. Ahmad Common Fixed Point Theorems for JS- Contractions, Bull. Math. Anal. Appl., Volume 8 (2016), pp. 12-22

[6] Aslam, Z.; Ahmad, J.; Sultana, N. New common fixed point theorems for cyclic compatible contractions, J. Math. Anal., Volume 8 (2017), pp. 1-12

[7] Banach, S. Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math., Volume 3 (1922), pp. 133-181

[8] M. Berzig Solving a class of matrix equations via the Bhaskar-Lakshmikantham coupled fixed point theorem, Appl. Math. Lett., Volume 25 (2012), pp. 1638-1643 | Zbl | DOI

[9] Berzig, M.; Samet, B. Solving systems of nonlinear matrix equations involving lipshitzian mappings, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-10 | DOI | Zbl

[10] Edelstein, M. On fixed and periodic points under contractive mappings, J. London Math. Soc., Volume 37 (1962), pp. 74-79 | DOI

[11] Hussain, A.; T. Kanwal Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, Trans. A. Razmadze Math. Ins., Volume 172 (2018), pp. 481-490 | DOI

[12] Hussain, N.; Parvaneh, V.; Samet, B.; Vetro, C. Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-17 | DOI

[13] Iqbal, I.; Hussain, N.; Sultana, N. Fixed Points of Multivalued Non-Linear F–Contractions with Application to Solution of Matrix Equations, Filomat, Volume 31 (2017), pp. 3319-3333 | DOI

[14] Jleli, M.; Samet, B. On a new generalization of Metric Spaces, J. Fixed Point Theory Appl., Volume 20 (2018), pp. 1-20 | DOI

[15] Kolman, B.; Busby, R. C.; Ross, S. Discrete Mathematical Structures, 3rd ed., PHI Pvt. Ltd., New Delhi, 2000

[16] Lateef, D.; Ahmad, J.; Al-Mazrooei, A. E. Common Fixed Point Theorems For Generalized Contractions, J. Math. Anal., Volume 8 (2017), pp. 157-166

[17] Lipschutz, S. Schaums Outlines of Theory and Problems of Set Theory and Related Topics, McGraw-Hill, New York, 1964

[18] Long, J.-H.; Hu, X.-Y.; Zhang, L. On the hermitian positive defnite solution of the nonlinear matrix equation \(x + a^*x - 1a + b^*x - 1 b = i\) , Bull. Braz. Math. Soc., Volume 39 (2008), pp. 371-386 | Zbl | DOI

[19] Nieto, J. J.; R. Rodrıguez-L ópez Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, Volume 22 (2005), pp. 223-239 | DOI | Zbl

[20] Onsod, W.; Saleewong, T.; Ahmad, J.; Al-Mazrooei, A. E.; Kumam, P. Fixed points of a \(\Theta\)–contraction on metric spaces with a graph, Commun. Nonlinear Anal., Volume 2 (2016), pp. 139-149 | DOI

[21] Ran, A. C. M.; Reurings, M. C. B. A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., Volume 2004 (2004), pp. 1435-1443 | Zbl | DOI

[22] Rasham, T.; Shoaib, A.; Hussain, N.; Arshad, M.; Khan, S. U. Common fixed point results for new Ciric-type rational multivalued F–contraction with an application, J. Fixed Point Theory Appl., Volume 20 (2018), pp. 1-16 | Zbl | DOI

[23] Hierro, A. F. Roldán López de A unified version of Ran and Reurings theorem and Nieto and Rodríguez-Lópezs theorem and low-dimensional generalizations, Appl. Math. Inf. Sci., Volume 10 (2016), pp. 383-393 | DOI

[24] Samet, B.; Vetro, C. Coupled fixed point, F–invariant set and fixed point of N-order, Ann. Funct. Anal., Volume 1 (2010), pp. 46-56 | Zbl | DOI

[25] Sawangsup, K.; Sintunavarat, W.; Hierro, A. F. Roldán López de Fixed point theorems for FR–contractions with applications to solution of nonlinear matrix equations, J. Fixed Point Theory Appl., Volume 19 (2017), pp. 1711-1725 | DOI

[26] Shoaib, A.; Asif, A.; Arshad, M.; Ameer, E. Generalized Dynamic Process for Generalized Multivalued F–contraction of Hardy Rogers Type in b-metric Spaces, Turkish J. Anal. Number Theory, Volume 6 (2018), pp. 43-48 | DOI

[27] Turinici, M. Ran-Reurings fixed point results in ordered metric spaces, Libertas Math., Volume 31 (2011), pp. 49-55

[28] Turinici, M. Nieto-Lopez theorems in ordered metric spaces, Math. Student, Volume 81 (2012), pp. 219-229 | Zbl

Cité par Sources :