The local discontinuous Galerkin method with generalized alternating flux for solving Burger's equation
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 5, p. 300-313.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we propose the local discontinuous Galerkin method based on the generalized alternating numerical flux for solving the one-dimensional nonlinear Burger's equation with Dirichlet boundary conditions. Based on the Hopf-Cole transformation, the original equation is transformed into a linear heat conduction equation with homogeneous Neumann boundary conditions. We will show that this method preserves stability. By virtue of the generalized Gauss-Radau projection, we can obtain the sub-optimal rate of convergence in $L^2$-norm of $\mathcal{O}(h^{k+\frac{1}{2}})$ with polynomial of degree $k$ and grid size $h$. Numerical experiments are given to verify the theoretical results.
DOI : 10.22436/jnsa.012.05.04
Classification : 65M60
Keywords: Burger's equation, local discontinuous Galerkin method, Hopf-Cole transformation, generalized alternating numerical flux, generalized Gauss-Radau projection

Zhang, Rongpei  1 ; Wang, Di  1 ; Yu, Xijun  2 ; Chen, Bo  3 ; Wang, Zhen  4

1 School of Mathematics and Systematic Sciences, Shenyang Normal University, Shenyang 110034, P. R. China
2 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, P. R. China
3 College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, P. R. China
4 College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, P. R. China
@article{JNSA_2019_12_5_a3,
     author = {Zhang, Rongpei  and Wang, Di  and Yu, Xijun  and Chen, Bo  and Wang, Zhen },
     title = {The local discontinuous {Galerkin} method with generalized alternating flux for solving {Burger's} equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {300-313},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2019},
     doi = {10.22436/jnsa.012.05.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.04/}
}
TY  - JOUR
AU  - Zhang, Rongpei 
AU  - Wang, Di 
AU  - Yu, Xijun 
AU  - Chen, Bo 
AU  - Wang, Zhen 
TI  - The local discontinuous Galerkin method with generalized alternating flux for solving Burger's equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 300
EP  - 313
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.04/
DO  - 10.22436/jnsa.012.05.04
LA  - en
ID  - JNSA_2019_12_5_a3
ER  - 
%0 Journal Article
%A Zhang, Rongpei 
%A Wang, Di 
%A Yu, Xijun 
%A Chen, Bo 
%A Wang, Zhen 
%T The local discontinuous Galerkin method with generalized alternating flux for solving Burger's equation
%J Journal of nonlinear sciences and its applications
%D 2019
%P 300-313
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.04/
%R 10.22436/jnsa.012.05.04
%G en
%F JNSA_2019_12_5_a3
Zhang, Rongpei ; Wang, Di ; Yu, Xijun ; Chen, Bo ; Wang, Zhen . The local discontinuous Galerkin method with generalized alternating flux for solving Burger's equation. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 5, p. 300-313. doi : 10.22436/jnsa.012.05.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.04/

[1] Arora, G.; V. Joshi A computational approach using modified trigonometric cubic B-spline for numerical solution of Burgers’ equation in one and two dimensions , Alex. Eng. J., Volume 57 (2017), pp. 1087-1098 | DOI

[2] Arora, G.; Singh, B. K. Numerical solution of Burgers’ equation with modified cubic B-spline differential quadrature method, Appl. Math. Comput., Volume 224 (2013), pp. 166-177 | DOI | Zbl

[3] Ashpazzadeh, E.; Han, B.; Lakestani, M. Biorthogonal multiwavelets on the interval for numerical solutions of Burgers’ equation, J. Comput. Appl. Math., Volume 317 (2017), pp. 510-534 | Zbl | DOI

[4] Bahadir, A. R. Numerical solution for one-dimensional Burgers’ equation using a fully implicit finite-difference method, Int. J. Appl. Math., Volume 1 (1999), pp. 897-909 | Zbl

[5] Bahadir, A. R.; M. Saglam A mixed finite difference and boundary element approach to one-dimensional Burgers’ equation, Appl. Math. Comput., Volume 160 (2005), pp. 663-673 | DOI | Zbl

[6] Bassi, F.; Rebay, S. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations, J. Comput. Phys., Volume 131 (1997), pp. 267-279 | DOI

[7] Caldwell, J.; Wanless, P.; Cook, A. E. A finite element approach to Burgers’ equation, Appl. Math. Modelling, Volume 5 (1981), pp. 189-193 | DOI

[8] Chen, S. Q.; Zhang, Y.-T. Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: Application to discontinuous Galerkin methods, J. Comput. Phys., Volume 230 (2011), pp. 4336-4352 | Zbl | DOI

[9] Cheng, Y.; Meng, X.; Zhang, Q. Application of generalized Gauss?Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations, Math. Comp., Volume 86 (2017), pp. 1233-1267 | Zbl | DOI

[10] Cheng, Y.; Zhang, Q. Local Analysis of the Local Discontinuous Galerkin Method with Generalized Alternating Numerical Flux for One-Dimensional Singularly Perturbed Problem , J. Sci. Comput., Volume 72 (2017), pp. 792-819 | Zbl

[11] Cockburn, B.; Shu, C.-W. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems, SIAM J. Numer. Anal., Volume 35 (1998), pp. 2440-2463 | DOI

[12] Cole, J. D. On a quasi-linear parabolic equation occurring in aerodynamics , Quart. Appl. Math., Volume 9 (1951), pp. 225-236 | DOI

[13] Gao, Y.; Le, L.-H.; Shi, B.-C. Numerical solution of Burgers’ equation by lattice Boltzmann method, Appl. Math. Comput., Volume 219 (2013), pp. 7685-7692 | Zbl | DOI

[14] E. Hopf The partial differential equation \(u_t + u_x = vu_{xx}\), Comm. Pure Appl. Math., Volume 3 (1950), pp. 201-230 | DOI

[15] Huang, P.; A. Abduwali The Modified Local Crank-Nicolson method for one-and two-dimensional Burgers’ equations , Comput. Math. Appl., Volume 59 (2010), pp. 2452-2463 | Zbl | DOI

[16] R. Jiwari A hybrid numerical scheme for the numerical solution of the Burgers’ equation, Comput. Phys. Commun., Volume 188 (2015), pp. 59-67 | DOI | Zbl

[17] Jiwari, R.; Mittal, R. C.; Sharma, K. K. A numerical scheme based on weighted average differential quadrature method for the numerical solution of Burgers’ equation, Appl. Math. Comput., Volume 219 (2013), pp. 6680-6691 | DOI | Zbl

[18] Khater, A. H.; Temsah, R. S.; Hassan, M. M. A Chebyshev spectral collocation method for solving Burgers’-type equations, J. Comput. Appl. Math., Volume 222 (2008), pp. 333-350 | Zbl | DOI

[19] Kutluay, S.; Bahadir, A. R.; A. Özdeş Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods, J. Comput. Appl. Math., Volume 103 (1999), pp. 251-262 | DOI | Zbl

[20] Meng, X.; Shu, C.-W.; B. Wu Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations, Math. Comp., Volume 85 (2016), pp. 1225-1261 | Zbl | DOI

[21] Mukundan, V.; A. Awasthi A Higher Order Numerical Implicit Method for Non-Linear Burgers’ Equation, Differ. Equ. Dyn. Syst., Volume 25 (2017), pp. 169-186 | Zbl

[22] Özdeş, T.; Aksan, E. N.; Özdeş, A. A finite element approach for solution of Burgers’ equation, Appl. Math. Comput., Volume 139 (2003), pp. 417-428 | DOI

[23] Seydaoğlu, M.; Erdoğan, U.; Öziş, T. Numerical solution of Burgers’ equation with high order splitting methods, J. Comput. Appl. Math., Volume 291 (2016), pp. 410-421 | DOI | Zbl

[24] Shao, L.; Feng, X. L.; He, Y. N. The local discontinuous Galerkin finite element method for Burger’s equation, Math. Comput. Modelling, Volume 54 (2011), pp. 2943-2954 | DOI | Zbl

[25] Tamsir, M.; Srivastava, V. K.; Jiwari, R. An algorithm based on exponential modified cubic B-spline differential quadrature method for nonlinear Burgers’ equation, Appl. Math. Comput., Volume 290 (2016), pp. 111-124 | DOI

[26] Xie, H. T.; Zhou, J. W.; Jiang, Z.; Guo, X. Y. Approximations for Burgers equations with C-N scheme and RBF collocation methods, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 3727-3734 | Zbl

[27] Zhang, R. P.; Yu, X. J.; Zhao, G. Z. The local discontinuous Galerkin method for Burger’s-Huxley and Burger’s-Fisher equations, Appl. Math. Comput., Volume 218 (2012), pp. 8773-8778 | Zbl | DOI

[28] Zhang, R. P.; Yu, X. J.; Zhao, G. Z. Modified Burgers’ equation by the local discontinuous Galerkin method, Chinese Phys. B, Volume 22 (2013), pp. 106-110 | DOI

Cité par Sources :