Voir la notice de l'article provenant de la source International Scientific Research Publications
Zhang, Rongpei  1 ; Wang, Di  1 ; Yu, Xijun  2 ; Chen, Bo  3 ; Wang, Zhen  4
@article{JNSA_2019_12_5_a3, author = {Zhang, Rongpei and Wang, Di and Yu, Xijun and Chen, Bo and Wang, Zhen }, title = {The local discontinuous {Galerkin} method with generalized alternating flux for solving {Burger's} equation}, journal = {Journal of nonlinear sciences and its applications}, pages = {300-313}, publisher = {mathdoc}, volume = {12}, number = {5}, year = {2019}, doi = {10.22436/jnsa.012.05.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.04/} }
TY - JOUR AU - Zhang, Rongpei AU - Wang, Di AU - Yu, Xijun AU - Chen, Bo AU - Wang, Zhen TI - The local discontinuous Galerkin method with generalized alternating flux for solving Burger's equation JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 300 EP - 313 VL - 12 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.04/ DO - 10.22436/jnsa.012.05.04 LA - en ID - JNSA_2019_12_5_a3 ER -
%0 Journal Article %A Zhang, Rongpei %A Wang, Di %A Yu, Xijun %A Chen, Bo %A Wang, Zhen %T The local discontinuous Galerkin method with generalized alternating flux for solving Burger's equation %J Journal of nonlinear sciences and its applications %D 2019 %P 300-313 %V 12 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.04/ %R 10.22436/jnsa.012.05.04 %G en %F JNSA_2019_12_5_a3
Zhang, Rongpei ; Wang, Di ; Yu, Xijun ; Chen, Bo ; Wang, Zhen . The local discontinuous Galerkin method with generalized alternating flux for solving Burger's equation. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 5, p. 300-313. doi : 10.22436/jnsa.012.05.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.04/
[1] A computational approach using modified trigonometric cubic B-spline for numerical solution of Burgers’ equation in one and two dimensions , Alex. Eng. J., Volume 57 (2017), pp. 1087-1098 | DOI
[2] Numerical solution of Burgers’ equation with modified cubic B-spline differential quadrature method, Appl. Math. Comput., Volume 224 (2013), pp. 166-177 | DOI | Zbl
[3] Biorthogonal multiwavelets on the interval for numerical solutions of Burgers’ equation, J. Comput. Appl. Math., Volume 317 (2017), pp. 510-534 | Zbl | DOI
[4] Numerical solution for one-dimensional Burgers’ equation using a fully implicit finite-difference method, Int. J. Appl. Math., Volume 1 (1999), pp. 897-909 | Zbl
[5] A mixed finite difference and boundary element approach to one-dimensional Burgers’ equation, Appl. Math. Comput., Volume 160 (2005), pp. 663-673 | DOI | Zbl
[6] A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations, J. Comput. Phys., Volume 131 (1997), pp. 267-279 | DOI
[7] A finite element approach to Burgers’ equation, Appl. Math. Modelling, Volume 5 (1981), pp. 189-193 | DOI
[8] Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: Application to discontinuous Galerkin methods, J. Comput. Phys., Volume 230 (2011), pp. 4336-4352 | Zbl | DOI
[9] Application of generalized Gauss?Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations, Math. Comp., Volume 86 (2017), pp. 1233-1267 | Zbl | DOI
[10] Local Analysis of the Local Discontinuous Galerkin Method with Generalized Alternating Numerical Flux for One-Dimensional Singularly Perturbed Problem , J. Sci. Comput., Volume 72 (2017), pp. 792-819 | Zbl
[11] The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems, SIAM J. Numer. Anal., Volume 35 (1998), pp. 2440-2463 | DOI
[12] On a quasi-linear parabolic equation occurring in aerodynamics , Quart. Appl. Math., Volume 9 (1951), pp. 225-236 | DOI
[13] Numerical solution of Burgers’ equation by lattice Boltzmann method, Appl. Math. Comput., Volume 219 (2013), pp. 7685-7692 | Zbl | DOI
[14] The partial differential equation \(u_t + u_x = vu_{xx}\), Comm. Pure Appl. Math., Volume 3 (1950), pp. 201-230 | DOI
[15] The Modified Local Crank-Nicolson method for one-and two-dimensional Burgers’ equations , Comput. Math. Appl., Volume 59 (2010), pp. 2452-2463 | Zbl | DOI
[16] A hybrid numerical scheme for the numerical solution of the Burgers’ equation, Comput. Phys. Commun., Volume 188 (2015), pp. 59-67 | DOI | Zbl
[17] A numerical scheme based on weighted average differential quadrature method for the numerical solution of Burgers’ equation, Appl. Math. Comput., Volume 219 (2013), pp. 6680-6691 | DOI | Zbl
[18] A Chebyshev spectral collocation method for solving Burgers’-type equations, J. Comput. Appl. Math., Volume 222 (2008), pp. 333-350 | Zbl | DOI
[19] Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods, J. Comput. Appl. Math., Volume 103 (1999), pp. 251-262 | DOI | Zbl
[20] Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations, Math. Comp., Volume 85 (2016), pp. 1225-1261 | Zbl | DOI
[21] A Higher Order Numerical Implicit Method for Non-Linear Burgers’ Equation, Differ. Equ. Dyn. Syst., Volume 25 (2017), pp. 169-186 | Zbl
[22] A finite element approach for solution of Burgers’ equation, Appl. Math. Comput., Volume 139 (2003), pp. 417-428 | DOI
[23] Numerical solution of Burgers’ equation with high order splitting methods, J. Comput. Appl. Math., Volume 291 (2016), pp. 410-421 | DOI | Zbl
[24] The local discontinuous Galerkin finite element method for Burger’s equation, Math. Comput. Modelling, Volume 54 (2011), pp. 2943-2954 | DOI | Zbl
[25] An algorithm based on exponential modified cubic B-spline differential quadrature method for nonlinear Burgers’ equation, Appl. Math. Comput., Volume 290 (2016), pp. 111-124 | DOI
[26] Approximations for Burgers equations with C-N scheme and RBF collocation methods, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 3727-3734 | Zbl
[27] The local discontinuous Galerkin method for Burger’s-Huxley and Burger’s-Fisher equations, Appl. Math. Comput., Volume 218 (2012), pp. 8773-8778 | Zbl | DOI
[28] Modified Burgers’ equation by the local discontinuous Galerkin method, Chinese Phys. B, Volume 22 (2013), pp. 106-110 | DOI
Cité par Sources :