The odd Fréchet inverse Rayleigh distribution: statistical properties and applications
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 5, p. 291-299.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We propose a new distribution with two parameters called the odd Fréchet inverse Rayleigh (OFIR) distribution. The new model can be more flexible. Several of its statistical properties are studied. The maximum likelihood (ML) estimation is used to drive estimators of OFIR parameters. The importance and flexibility of the new model is assessed using one real data set.
DOI : 10.22436/jnsa.012.05.03
Classification : 60E05, 62E10, 62N05
Keywords: Odd Fréchet family, inverse Rayleigh distribution, moments, maximum likelihood

Elgarhy, M. 1 ; Alrajhi, Sharifah  2

1 Vice Presidency for Graduate Studies and Scientific Research, University of Jeddah, Jaddeh, KSA
2 Statistics Department, Faculty of Science, King Abdulaziz University, Jaddeh, KSA
@article{JNSA_2019_12_5_a2,
     author = {Elgarhy, M. and Alrajhi, Sharifah },
     title = {The odd {Fr\'echet} inverse {Rayleigh} distribution: statistical properties and applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {291-299},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2019},
     doi = {10.22436/jnsa.012.05.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.03/}
}
TY  - JOUR
AU  - Elgarhy, M.
AU  - Alrajhi, Sharifah 
TI  - The odd Fréchet inverse Rayleigh distribution: statistical properties and applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 291
EP  - 299
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.03/
DO  - 10.22436/jnsa.012.05.03
LA  - en
ID  - JNSA_2019_12_5_a2
ER  - 
%0 Journal Article
%A Elgarhy, M.
%A Alrajhi, Sharifah 
%T The odd Fréchet inverse Rayleigh distribution: statistical properties and applications
%J Journal of nonlinear sciences and its applications
%D 2019
%P 291-299
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.03/
%R 10.22436/jnsa.012.05.03
%G en
%F JNSA_2019_12_5_a2
Elgarhy, M.; Alrajhi, Sharifah . The odd Fréchet inverse Rayleigh distribution: statistical properties and applications. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 5, p. 291-299. doi : 10.22436/jnsa.012.05.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.03/

[1] Afify, A. Z.; Nofal, Z. M.; Butt, N. S. Transmuted complementary Weibull geometric distribution , Pak. J. Stat. Oper. Res., Volume 10 (2014), pp. 435-454 | DOI

[2] Afify, A. Z.; Nofal, Z. M.; Ebraheim, A. N. Exponentiated transmuted generalized Rayleigh distribution: A new four parameter Rayleigh distribution, Pak. J. Stat. Oper. Res., Volume 11 (2015), pp. 115-134

[3] Afify, A. Z.; Yousof, H. M.; Nadarajah, S. The beta transmuted-H family for lifetime data, Stat. Interface, Volume 10 (2017), pp. 505-520 | Zbl

[4] Ahmad, A.; Ahmad, S. P.; Ahmed, A. Transmuted inverse Rayleigh distribution: A generalization of the inverse Rayleigh distribution , Math. Theo. Model., Volume 4 (2014), pp. 90-98

[5] Almalki, S. J.; Yuan, J. A new modified Weibull distribution, Reliab. Eng. Syst. Safety, Volume 111 (2013), pp. 164-170 | DOI

[6] Cordeiro, G. M.; Hashimoto, E. M.; Ortega, E. M. M. The McDonald Weibull model, Statistics, Volume 48 (2014), pp. 256-278 | DOI

[7] Elbatal, I.; Gebaly, Y. M. El; Amin, E. A. The beta generalized inverse Weibull geometric distribution and its applications, Pak. J. Stat. Oper. Res., Volume 13 (2017), pp. 75-90

[8] Gharraph, M. K. Comparison of estimators of location measures of an inverse Rayleigh distribution, Egyptian Statist. J., Volume 37 (1993), pp. 295-309

[9] Gross, A. J.; Clark, V. A. Survival distributions: Reliability applications in the biomedical sciences, John Wiley & Sons, New York (1975) | Zbl

[10] Haq, M. A. Kumaraswamy exponentiated inverse Rayleigh distribution, Math. Theo. Model., Volume 6 (2016), pp. 93-104

[11] Haq, M. A. Transmuted exponentiated inverse Rayleigh distribution, J. Stat. Appl. Prob., Volume 5 (2016), pp. 337-343

[12] Haq, M. A.; Elgarhy, M. The odd Frechet-G family of probability distributions, J. Stat. Appl. Prob., Volume 7 (2018), pp. 185-201

[13] Hassan, A. S.; Amin, E. A.; Aziz, A. A. Abd-El Estimation and prediction from inverse Rayleigh distribution based on lower record values, Appl. Math. Sci. (Ruse), Volume 4 (2010), pp. 3057-3066 | Zbl

[14] M. S. Khan Modified inverse Rayleigh distribution, Int. J. Comput. Appl., Volume 87 (2014), pp. 28-33

[15] Khan, M. S.; King, R. Transmuted modified inverse Rayleigh distribution, Austrian J. Statist., Volume 44 (2015), pp. 17-29

[16] Leao, J.; Saulo, H.; Bourguignon, M.; Cintra, R.; Rego, L. C.; Cordeiro, G. M. On some properties of the beta inverse Rayleigh distribution, Chil. J. Stat., Volume 4 (2013), pp. 111-131

[17] Lee, C.; Famoye, F.; Olumolade, O. Beta-Weibull distribution: Some properties and applications to censored data, J. Modern Appl. Statist. Methods, Volume 6 (2007), pp. 173-186 | DOI

[18] Tahir, M. H.; Mansoor, M.; Zubair, M.; G. G. Hamedani McDonald log logistic distribution with an application to breast cancer data, J. Stat. Theory Appl., Volume 13 (2014), pp. 65-82

[19] Trayer, V. N. Doklady Acad, Nauk, Belorus, U. S. S. R., 1964

[20] Voda, V. G. On the inverse Rayleigh distributed random variable, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs., Volume 19 (1972), pp. 13-21 | Zbl

Cité par Sources :