Voir la notice de l'article provenant de la source International Scientific Research Publications
Elgarhy, M. 1 ; Alrajhi, Sharifah  2
@article{JNSA_2019_12_5_a2, author = {Elgarhy, M. and Alrajhi, Sharifah }, title = {The odd {Fr\'echet} inverse {Rayleigh} distribution: statistical properties and applications}, journal = {Journal of nonlinear sciences and its applications}, pages = {291-299}, publisher = {mathdoc}, volume = {12}, number = {5}, year = {2019}, doi = {10.22436/jnsa.012.05.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.03/} }
TY - JOUR AU - Elgarhy, M. AU - Alrajhi, Sharifah TI - The odd Fréchet inverse Rayleigh distribution: statistical properties and applications JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 291 EP - 299 VL - 12 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.03/ DO - 10.22436/jnsa.012.05.03 LA - en ID - JNSA_2019_12_5_a2 ER -
%0 Journal Article %A Elgarhy, M. %A Alrajhi, Sharifah %T The odd Fréchet inverse Rayleigh distribution: statistical properties and applications %J Journal of nonlinear sciences and its applications %D 2019 %P 291-299 %V 12 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.03/ %R 10.22436/jnsa.012.05.03 %G en %F JNSA_2019_12_5_a2
Elgarhy, M.; Alrajhi, Sharifah . The odd Fréchet inverse Rayleigh distribution: statistical properties and applications. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 5, p. 291-299. doi : 10.22436/jnsa.012.05.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.03/
[1] Transmuted complementary Weibull geometric distribution , Pak. J. Stat. Oper. Res., Volume 10 (2014), pp. 435-454 | DOI
[2] Exponentiated transmuted generalized Rayleigh distribution: A new four parameter Rayleigh distribution, Pak. J. Stat. Oper. Res., Volume 11 (2015), pp. 115-134
[3] The beta transmuted-H family for lifetime data, Stat. Interface, Volume 10 (2017), pp. 505-520 | Zbl
[4] Transmuted inverse Rayleigh distribution: A generalization of the inverse Rayleigh distribution , Math. Theo. Model., Volume 4 (2014), pp. 90-98
[5] A new modified Weibull distribution, Reliab. Eng. Syst. Safety, Volume 111 (2013), pp. 164-170 | DOI
[6] The McDonald Weibull model, Statistics, Volume 48 (2014), pp. 256-278 | DOI
[7] The beta generalized inverse Weibull geometric distribution and its applications, Pak. J. Stat. Oper. Res., Volume 13 (2017), pp. 75-90
[8] Comparison of estimators of location measures of an inverse Rayleigh distribution, Egyptian Statist. J., Volume 37 (1993), pp. 295-309
[9] Survival distributions: Reliability applications in the biomedical sciences, John Wiley & Sons, New York (1975) | Zbl
[10] Kumaraswamy exponentiated inverse Rayleigh distribution, Math. Theo. Model., Volume 6 (2016), pp. 93-104
[11] Transmuted exponentiated inverse Rayleigh distribution, J. Stat. Appl. Prob., Volume 5 (2016), pp. 337-343
[12] The odd Frechet-G family of probability distributions, J. Stat. Appl. Prob., Volume 7 (2018), pp. 185-201
[13] Estimation and prediction from inverse Rayleigh distribution based on lower record values, Appl. Math. Sci. (Ruse), Volume 4 (2010), pp. 3057-3066 | Zbl
[14] Modified inverse Rayleigh distribution, Int. J. Comput. Appl., Volume 87 (2014), pp. 28-33
[15] Transmuted modified inverse Rayleigh distribution, Austrian J. Statist., Volume 44 (2015), pp. 17-29
[16] On some properties of the beta inverse Rayleigh distribution, Chil. J. Stat., Volume 4 (2013), pp. 111-131
[17] Beta-Weibull distribution: Some properties and applications to censored data, J. Modern Appl. Statist. Methods, Volume 6 (2007), pp. 173-186 | DOI
[18] McDonald log logistic distribution with an application to breast cancer data, J. Stat. Theory Appl., Volume 13 (2014), pp. 65-82
[19] Doklady Acad, Nauk, Belorus, U. S. S. R., 1964
[20] On the inverse Rayleigh distributed random variable, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs., Volume 19 (1972), pp. 13-21 | Zbl
Cité par Sources :