Voir la notice de l'article provenant de la source International Scientific Research Publications
Aldahlan, Maha A. 1 ; Afify, Ahmed Z. 2 ; Ahmed, A-Hadi N. 3
@article{JNSA_2019_12_5_a1, author = {Aldahlan, Maha A. and Afify, Ahmed Z. and Ahmed, A-Hadi N.}, title = {The odd inverse {Pareto-G} class: properties and applications}, journal = {Journal of nonlinear sciences and its applications}, pages = {278-290}, publisher = {mathdoc}, volume = {12}, number = {5}, year = {2019}, doi = {10.22436/jnsa.012.05.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.02/} }
TY - JOUR AU - Aldahlan, Maha A. AU - Afify, Ahmed Z. AU - Ahmed, A-Hadi N. TI - The odd inverse Pareto-G class: properties and applications JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 278 EP - 290 VL - 12 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.02/ DO - 10.22436/jnsa.012.05.02 LA - en ID - JNSA_2019_12_5_a1 ER -
%0 Journal Article %A Aldahlan, Maha A. %A Afify, Ahmed Z. %A Ahmed, A-Hadi N. %T The odd inverse Pareto-G class: properties and applications %J Journal of nonlinear sciences and its applications %D 2019 %P 278-290 %V 12 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.02/ %R 10.22436/jnsa.012.05.02 %G en %F JNSA_2019_12_5_a1
Aldahlan, Maha A.; Afify, Ahmed Z.; Ahmed, A-Hadi N. The odd inverse Pareto-G class: properties and applications. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 5, p. 278-290. doi : 10.22436/jnsa.012.05.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.02/
[1] On exponentiated Lomax distribution, Int. J. Math. Arch., Volume 3 (2012), pp. 2144-2150
[2] The odd exponentiated half-logistic-G family: properties, characterizations and applications, Chil. J. Stat., Volume 8 (2017), pp. 65-91
[3] The complementary geometric transmuted-G family of distributions: model, properties and application, Hacet. J. Math. Statist., Volume 47 (2018), pp. 1348-1374
[4] The Complementary Generalized Transmuted Poisson-G Family of Distributions, Austrian J. Statist., Volume 47 (2018), pp. 51-71 | DOI
[5] A new method for generating families of distributions, Metron, Volume 71 (2013), pp. 63-79 | DOI
[6] A new weighted Lindley distribution with application, Braz. J. Probab. Stat., Volume 30 (2016), pp. 1-27 | Zbl | DOI
[7] Weibull Lindley distribution, REVSTAT, Volume 16 (2018), pp. 87-113 | Zbl
[8] The Weibull-G family of probability distributions, J. Data Sci., Volume 12 (2014), pp. 53-68
[9] The odd Lomax generator of distributions: Properties, estimation and applications, J. Comput. Appl. Math., Volume 347 (2019), pp. 222-237 | DOI | Zbl
[10] The Lindley Weibull Distribution: Properties and Applications, Anais da Academia Brasileira de Ciencias, Volume 90 (2018), pp. 2579-2598
[11] The exponentiated Weibull-H family of distributions: Theory and Applications, Mediterr. J. Math., Volume 14 (2017), pp. 1-22 | DOI | Zbl
[12] A new family of generalized distributions, J. Stat. Comput. Simul., Volume 81 (2011), pp. 883-898 | DOI
[13] The Lomax generator of distributions: properties, minification process and regression model, Appl. Math. Comput., Volume 247 (2014), pp. 465-486 | Zbl | DOI
[14] Beta-normal distribution and its applications, Comm. Statist. Theory Methods, Volume 31 (2002), pp. 497-512 | DOI
[15] Marshall–Olkin extended Lomax distribution and its application to censored data, Comm. Statist. Theory Methods, Volume 36 (2007), pp. 1855-1866 | DOI | Zbl
[16] Marshall-Olkin extended Lindley distribution and its application, Int. J. Appl. Math., Volume 25 (2012), pp. 709-721 | Zbl
[17] Modeling failure time data by Lehman alternatives, Comm. Statist. Theory Methods, Volume 27 (1998), pp. 887-904 | DOI | Zbl
[18] Transmuted two-parameter Lindley distribution, Comm. Statist. Theory Methods, Volume 46 (2017), pp. 11866-11879 | DOI | Zbl
[19] Loss models: from data to decisions, John Wiley & Sons, Hoboken, 2012 | Zbl
[20] Generalized Rayleigh distribution: different methods of estimations, Comput. Statist. Data Anal., Volume 49 (2005), pp. 187-200 | DOI | Zbl
[21] Statistical methods for survival data analysis: Third edition, John Wiley & Sons, Hoboken, 2003 | DOI
[22] An extended Lomax distribution, Statistics, Volume 47 (2013), pp. 800-816 | Zbl | DOI
[23] Fiducial distributions and Bayes’ theorem, J. Roy. Statist. Soc. Ser. B, Volume 20 (1958), pp. 102-107
[24] A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, Volume 84 (1997), pp. 641-652 | DOI
[25] Exponentiated Weibull family for analyzing bathtub failure-real data, IEEE Trans. Reliab., Volume 42 (1993), pp. 299-302 | DOI
[26] A generalized Lindley distribution, Sankhya B, Volume 73 (2011), pp. 331-359 | DOI
[27] Theoretical explanation of observed decreasing failure rate, Technometrics, Volume 5 (1963), pp. 375-383
[28] On the resultant of a large number of vibration of the same pitch and arbitrary phase, Philosophical Magazine: Series 5, Volume 43 (1880), pp. 259-272
[29] A quasi Lindley distribution, African J. Math. Comput. Sci. Res., Volume 6 (2013), pp. 64-71 | DOI
[30] The Weibull-Lomax distribution: properties and applications, Hacet. J. Math. Stat., Volume 44 (2015), pp. 455-474 | Zbl | DOI
[31] The gamma-uniform distribution and its application , Kybernetika (Prague), Volume 48 (2012), pp. 16-30 | EuDML
[32] A statistical distribution function of wide applicability, J. Appl. Mech., Volume 18 (1951), pp. 290-293
[33] On families of beta and generalized gamma generated distributions and associated inference, Stat. Methodol., Volume 6 (2009), pp. 344-362 | Zbl | DOI
Cité par Sources :