Voir la notice de l'article provenant de la source International Scientific Research Publications
Shrahili, M.  1 ; Elbatal, I. 2 ; Muhammad, Mustapha  3
@article{JNSA_2019_12_5_a0, author = {Shrahili, M. and Elbatal, I. and Muhammad, Mustapha }, title = {The type {I} half-logistic {Burr} {X} distribution: theory and practice}, journal = {Journal of nonlinear sciences and its applications}, pages = {262-277}, publisher = {mathdoc}, volume = {12}, number = {5}, year = {2019}, doi = {10.22436/jnsa.012.05.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.01/} }
TY - JOUR AU - Shrahili, M. AU - Elbatal, I. AU - Muhammad, Mustapha TI - The type I half-logistic Burr X distribution: theory and practice JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 262 EP - 277 VL - 12 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.01/ DO - 10.22436/jnsa.012.05.01 LA - en ID - JNSA_2019_12_5_a0 ER -
%0 Journal Article %A Shrahili, M. %A Elbatal, I. %A Muhammad, Mustapha %T The type I half-logistic Burr X distribution: theory and practice %J Journal of nonlinear sciences and its applications %D 2019 %P 262-277 %V 12 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.01/ %R 10.22436/jnsa.012.05.01 %G en %F JNSA_2019_12_5_a0
Shrahili, M. ; Elbatal, I.; Muhammad, Mustapha . The type I half-logistic Burr X distribution: theory and practice. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 5, p. 262-277. doi : 10.22436/jnsa.012.05.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.01/
[1] Empirical Bayes Estimation of P(Y < X) and Characterization of Burr-Type X Model, J. Statist. Plann. Inference, Volume 64 (1997), pp. 297-308 | DOI | Zbl
[2] Kumaraswamy Exponentiated Inverse Rayleigh Distribution, Math. Theo. Model., Volume 6 (2016), pp. 93-104
[3] On the Weibull-X family of distributions, J. Stat. Theory Appl., Volume 14 (2014), pp. 169-183
[4] Data: a collection of problems from many fields for the student and research worker, Springer Science Business Media, New York, 2012
[5] Cumulative frequency functions, Ann. Math. Statistics, Volume 13 (1942), pp. 215-232 | Zbl | DOI
[6] The type I half-logistic family of distributions, J. Stat. Comput. Simul., Volume 86 (2016), pp. 707-728 | DOI
[7] The beta generalized Rayleigh distribution with applications to lifetime data, Statist. Papers, Volume 54 (2013), pp. 133-161 | Zbl | DOI
[8] A new family of generalized distributions, J. Stat. Comput. Simul., Volume 81 (2011), pp. 883-898 | DOI
[9] Exponentiated Generalized Inverse Weibull Distribution, Appl. Math. Sci., Volume 8 (2014), pp. 3997-4012
[10] Beta-normal distribution and its applications, Comm. Statist. Theory Methods, Volume 31 (2002), pp. 497-512 | DOI
[11] On the moments of residual life in reliability and some characterization results, Comm. Statist. A–Theory Methods, Volume 12 (1983), pp. 449-461 | DOI
[12] New extension of Burr type X distribution properties with application, J. King Saud University-Sci., Volume 30 (2017), pp. 450-457 | DOI
[13] Generalized Rayleigh distribution: different methods of estimations, Comput. Statist. Data Anal., Volume 49 (2005), pp. 187-200 | DOI | Zbl
[14] Transmuted Rayleigh Distribution, Austrian J. Stat., Volume 42 (2013), pp. 21-31 | DOI
[15] Transmuted generalized Rayleigh distribution, J. Statist. Appl. Prob., Volume 3 (2014), pp. 9-20
[16] Weibull rayleigh distribution: Theory and applications, Appl. Math. Inf. Sci., Volume 9 (2015), pp. 2127-2137
[17] The beta Burr type X distribution properties with application, SpringerPlus, Volume 5 (2016), pp. 1-18 | DOI
[18] A generalization of the burrxii-poisson distribution and its applications, J. Statist. Appl. Prob., Volume 5 (2016), pp. 29-41
[19] Poisson-odd generalized exponential family of distributions: Theory and Applications, Hacettepe Univ. Bullet. Natural Sci. Eng. Ser. B Math. Statist., Volume 47 (2016), pp. 1-20
[20] Generalized Half Logistic Poisson Distributions, Comm. Statist. Appl. Methods, Volume 24 (2017), pp. 1-14 | DOI
[21] The Complementary Exponentiated BurrXII Poisson Distribution: model, properties and application , J. Statist. Appl. Prob., Volume 6 (2017), pp. 33-48
[22] The Half Logistic Poisson Distribution, Asian J. Math. Appl., Volume 2017 (2017), pp. 1-15
[23] Exponentiated generalized half logistic Burr X distribution, Adv. Appl. Statist., Volume 52 (2018), pp. 145-169
[24] Burr type X distribution: revisited , JPSS J. Probab. Stat. Sci., Volume 4 (2006), pp. 179-193
[25] The beta compound Rayleigh distribution: Properties and applications, Int. J. Adv. Statist. Prob., Volume 5 (2017), pp. 57-64 | DOI
[26] A comparison of maximum likelihood estimators for the three-parameter Weibull distribution, J. Roy. Statist. Soc. Ser. C, Volume 36 (1987), pp. 358-369 | DOI
[27] Inference for reliability and stress-strength for a scaled Burr Type X distribution, Lifetime Data Anal., Volume 7 (2001), pp. 187-200 | Zbl | DOI
[28] Some properties of a scaled Burr type X distribution, J. Statist. Plann. Inference, Volume 128 (2005), pp. 271-280 | Zbl | DOI
[29] The odd generalized exponential family of distributions with applications, J. Stat. Distrib. Appl., Volume 2 (2015), pp. 1-28 | DOI | Zbl
[30] On families of beta-and generalized gamma-generated distributions and associated inference , Statist. Method., Volume 6 (2009), pp. 344-362 | Zbl | DOI
Cité par Sources :