The type I half-logistic Burr X distribution: theory and practice
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 5, p. 262-277.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we explore the properties and importance of a lifetime distribution so called type I half-logistic Burr X $({\rm TIHL}_{BX})$ in detail (also called type I half logistic generalized Rayleigh $(\text{TIHL}_{GR})$). We investigate some of its mathematical and statistical properties such as the explicit form of the ordinary moments, moment generating function, conditional moments, Bonferroni and Lorenz curves, mean deviations, residual life and reversed residual functions, Shannon entropy and Renyi entropy. The maximum likelihood method is used to estimate the model parameters. Simulation studies were conducted to assess the finite sample behavior of the maximum likelihood estimators. Finally, we illustrate the importance and applicability of the model by the study of two real data sets.
DOI : 10.22436/jnsa.012.05.01
Classification : 62E05, 62F10, 62F12
Keywords: Type I half logistic distribution, Burr X distribution, moments, maximum likelihood estimate

Shrahili, M.  1 ; Elbatal, I. 2 ; Muhammad, Mustapha  3

1 Department of Statistics and Operations Research, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
2 Department of Mathematics and Statistics, College of Science Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia
3 Department of Mathematical Sciences, Faculty of Physical Sciences, Bayero University Kano (BUK), Nigeria
@article{JNSA_2019_12_5_a0,
     author = {Shrahili, M.  and Elbatal, I. and Muhammad, Mustapha },
     title = {The type {I} half-logistic {Burr} {X} distribution: theory and practice},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {262-277},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2019},
     doi = {10.22436/jnsa.012.05.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.01/}
}
TY  - JOUR
AU  - Shrahili, M. 
AU  - Elbatal, I.
AU  - Muhammad, Mustapha 
TI  - The type I half-logistic Burr X distribution: theory and practice
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 262
EP  - 277
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.01/
DO  - 10.22436/jnsa.012.05.01
LA  - en
ID  - JNSA_2019_12_5_a0
ER  - 
%0 Journal Article
%A Shrahili, M. 
%A Elbatal, I.
%A Muhammad, Mustapha 
%T The type I half-logistic Burr X distribution: theory and practice
%J Journal of nonlinear sciences and its applications
%D 2019
%P 262-277
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.01/
%R 10.22436/jnsa.012.05.01
%G en
%F JNSA_2019_12_5_a0
Shrahili, M. ; Elbatal, I.; Muhammad, Mustapha . The type I half-logistic Burr X distribution: theory and practice. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 5, p. 262-277. doi : 10.22436/jnsa.012.05.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.05.01/

[1] Ahmad, K. E.; Fakhry, M. E.; Jaheen, Z. F. Empirical Bayes Estimation of P(Y < X) and Characterization of Burr-Type X Model, J. Statist. Plann. Inference, Volume 64 (1997), pp. 297-308 | DOI | Zbl

[2] Haq, M. Ahsan ul Kumaraswamy Exponentiated Inverse Rayleigh Distribution, Math. Theo. Model., Volume 6 (2016), pp. 93-104

[3] Alzaatreh, A.; Ghosh, I. On the Weibull-X family of distributions, J. Stat. Theory Appl., Volume 14 (2014), pp. 169-183

[4] Andrews, D. F.; Herzberg, A. M. Data: a collection of problems from many fields for the student and research worker, Springer Science Business Media, New York, 2012

[5] Burr, I. W. Cumulative frequency functions, Ann. Math. Statistics, Volume 13 (1942), pp. 215-232 | Zbl | DOI

[6] Cordeiro, G. M.; Alizadeh, M.; P. R. D. Marinho The type I half-logistic family of distributions, J. Stat. Comput. Simul., Volume 86 (2016), pp. 707-728 | DOI

[7] Cordeiro, G. M.; Cristino, C. T.; Hashimoto, E. M.; Ortega, E. M. M. The beta generalized Rayleigh distribution with applications to lifetime data, Statist. Papers, Volume 54 (2013), pp. 133-161 | Zbl | DOI

[8] Cordeiro, G. M.; Castro, M. de A new family of generalized distributions, J. Stat. Comput. Simul., Volume 81 (2011), pp. 883-898 | DOI

[9] Elbatal, I.; H. Z. Muhammed Exponentiated Generalized Inverse Weibull Distribution, Appl. Math. Sci., Volume 8 (2014), pp. 3997-4012

[10] Eugene, N.; Lee, C.; Famoye, F. Beta-normal distribution and its applications, Comm. Statist. Theory Methods, Volume 31 (2002), pp. 497-512 | DOI

[11] Gupta, P. L.; R. C. Gupta On the moments of residual life in reliability and some characterization results, Comm. Statist. A–Theory Methods, Volume 12 (1983), pp. 449-461 | DOI

[12] Khaleel, M. A.; Ibrahim, N. A.; Shitan, M.; F. Merovci New extension of Burr type X distribution properties with application, J. King Saud University-Sci., Volume 30 (2017), pp. 450-457 | DOI

[13] Kundu, D.; Raqab, M. Z. Generalized Rayleigh distribution: different methods of estimations, Comput. Statist. Data Anal., Volume 49 (2005), pp. 187-200 | DOI | Zbl

[14] Merovci, F. Transmuted Rayleigh Distribution, Austrian J. Stat., Volume 42 (2013), pp. 21-31 | DOI

[15] Merovci, F. Transmuted generalized Rayleigh distribution, J. Statist. Appl. Prob., Volume 3 (2014), pp. 9-20

[16] Merovci, F.; Elbatal, I. Weibull rayleigh distribution: Theory and applications, Appl. Math. Inf. Sci., Volume 9 (2015), pp. 2127-2137

[17] Merovci, F.; Khaleel, M. A.; Ibrahim, N. A.; Shitan, M. The beta Burr type X distribution properties with application, SpringerPlus, Volume 5 (2016), pp. 1-18 | DOI

[18] Muhammad, M. A generalization of the burrxii-poisson distribution and its applications, J. Statist. Appl. Prob., Volume 5 (2016), pp. 29-41

[19] Muhammad, M. Poisson-odd generalized exponential family of distributions: Theory and Applications, Hacettepe Univ. Bullet. Natural Sci. Eng. Ser. B Math. Statist., Volume 47 (2016), pp. 1-20

[20] Muhammad, M. Generalized Half Logistic Poisson Distributions, Comm. Statist. Appl. Methods, Volume 24 (2017), pp. 1-14 | DOI

[21] Muhammad, M. The Complementary Exponentiated BurrXII Poisson Distribution: model, properties and application , J. Statist. Appl. Prob., Volume 6 (2017), pp. 33-48

[22] Muhammad, M.; Yahaya, M. A. The Half Logistic Poisson Distribution, Asian J. Math. Appl., Volume 2017 (2017), pp. 1-15

[23] Nasiru, S.; Mwita, P. N.; Ngesa, O. Exponentiated generalized half logistic Burr X distribution, Adv. Appl. Statist., Volume 52 (2018), pp. 145-169

[24] Raqab, M. Z.; Kundu, D. Burr type X distribution: revisited , JPSS J. Probab. Stat. Sci., Volume 4 (2006), pp. 179-193

[25] Reyad, H. M.; S. A. Othman The beta compound Rayleigh distribution: Properties and applications, Int. J. Adv. Statist. Prob., Volume 5 (2017), pp. 57-64 | DOI

[26] Smith, R. L.; Naylor, J. C. A comparison of maximum likelihood estimators for the three-parameter Weibull distribution, J. Roy. Statist. Soc. Ser. C, Volume 36 (1987), pp. 358-369 | DOI

[27] Surles, J. G.; Padgett, W. J. Inference for reliability and stress-strength for a scaled Burr Type X distribution, Lifetime Data Anal., Volume 7 (2001), pp. 187-200 | Zbl | DOI

[28] Surles, J. G.; Padgett, W. J. Some properties of a scaled Burr type X distribution, J. Statist. Plann. Inference, Volume 128 (2005), pp. 271-280 | Zbl | DOI

[29] Tahir, M. H.; Cordeiro, G. M.; Alizadeh, M.; Mansoor, M.; Zubair, M.; Hamedani, G. G. The odd generalized exponential family of distributions with applications, J. Stat. Distrib. Appl., Volume 2 (2015), pp. 1-28 | DOI | Zbl

[30] Zografos, K.; Balakrishnan, N. On families of beta-and generalized gamma-generated distributions and associated inference , Statist. Method., Volume 6 (2009), pp. 344-362 | Zbl | DOI

Cité par Sources :