Alpha power transformed extended exponential distribution: properties and applications
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 4, p. 239-251.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, a three-parameter lifetime model motivated by alpha power transformation is considered. We call the proposed distribution as; the \textit{alpha power transformed extended exponential} (APTEE). The APTEE model contains new recent models as; alpha power transformed exponential and alpha power transformed Lindley distributions. At the same time, it contains classical models as exponential, gamma, and Lindley distributions. The properties of the APTEE distribution are derived. Parameter estimation is accomplished using maximum likelihood, percentiles, and Cramer-von Mises methods. Simulation issues and applications to real data are emphasized.
DOI : 10.22436/jnsa.012.04.05
Classification : 60E05, 62E10, 62N05
Keywords: Extended exponential, moments, maximum likelihood, percentiles and Cramer-von Mises

Hassan, Amal S.  1 ; Mohamd, Rokaya E.  1 ; Elgarhy, M.  2 ; Fayomi, Aisha 3

1 Institute of Statistical Studies and Research, Cairo University, Egypt
2 Vice Presidency for Graduate Studies and Scientific Research, University of Jeddah, Jaddeh, KSA
3 Statistics Department, Faculty of Science, King AbdulAziz University, Jaddeh, KSA
@article{JNSA_2019_12_4_a4,
     author = {Hassan, Amal S.  and Mohamd, Rokaya E.  and Elgarhy, M.  and Fayomi, Aisha},
     title = {Alpha power transformed extended exponential distribution: properties and applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {239-251},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2019},
     doi = {10.22436/jnsa.012.04.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.04.05/}
}
TY  - JOUR
AU  - Hassan, Amal S. 
AU  - Mohamd, Rokaya E. 
AU  - Elgarhy, M. 
AU  - Fayomi, Aisha
TI  - Alpha power transformed extended exponential distribution: properties and applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 239
EP  - 251
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.04.05/
DO  - 10.22436/jnsa.012.04.05
LA  - en
ID  - JNSA_2019_12_4_a4
ER  - 
%0 Journal Article
%A Hassan, Amal S. 
%A Mohamd, Rokaya E. 
%A Elgarhy, M. 
%A Fayomi, Aisha
%T Alpha power transformed extended exponential distribution: properties and applications
%J Journal of nonlinear sciences and its applications
%D 2019
%P 239-251
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.04.05/
%R 10.22436/jnsa.012.04.05
%G en
%F JNSA_2019_12_4_a4
Hassan, Amal S. ; Mohamd, Rokaya E. ; Elgarhy, M. ; Fayomi, Aisha. Alpha power transformed extended exponential distribution: properties and applications. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 4, p. 239-251. doi : 10.22436/jnsa.012.04.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.04.05/

[1] Aarset, M. V. How to identify a bathtub hazard rate, IEEE Trans. Reliab., Volume 36 (1987), pp. 106-108 | DOI | Zbl

[2] Cordeiro, G. M.; Castro, M. de A new family of generalized distributions, J. Stat. Comput. Simul., Volume 81 (2011), pp. 883-898 | DOI

[3] Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; Jeffrey, D. J.; Knuth, D. E. On the Lambert W function, Adv. Comput. Math., Volume 5 (1996), pp. 329-359 | DOI

[4] D’Agostino, R. B.; Stephens, M. A. Goodness-of-Fit Techniques, Marcel Dekker, New York, 1986

[5] Andrade, T. A. N. de; Bourguignon, M.; Cordeiro, G. M. The exponentiated generalized extended exponential distribution, J. Data Sci., Volume 14 (2016), pp. 393-413

[6] Dey, S.; Ghosh, I.; Kumar, D. Alpha power transformed Lindley distribution: Properties and associated inference with application to earthquake data, Ann. Data Sci., Volume 2018 (2018), pp. 1-28 | DOI

[7] Gómez, Y. M.; Bolfarine, H.; Gómez, H. W. A new extension of the exponential distribution, Rev. Colombiana Estadist., Volume 37 (2014), pp. 25-34

[8] Gupta, R. D.; Kundu, D. Exponentiated exponential family: An alternative to gamma and Weibull distributions, Biom. J., Volume 43 (2001), pp. 117-130 | DOI | Zbl

[9] Gupta, R. D.; Kundu, D. Generalized exponential distributions, Aust. N. Z. J. Stat., Volume 41 (1999), pp. 173-188 | DOI

[10] Jodra, P. Computer generation of random variables with Lindley or Poisson-Lindley distribution via the LambertW function , Math. Comput. Simulation, Volume 81 (2010), pp. 851-859 | DOI

[11] D. V. Lindley Fiducial distributions and Bayes’ theorem, J. Roy. Statist. Soc. Ser. B, Volume 20 (1958), pp. 102-107

[12] Linhart, H.; W. Zucchini Model Selection, John Wiley & Sons, New York, 1986

[13] A. Luceño Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators, Comput. Statist. Data Anal., Volume 51 (2006), pp. 904-917 | Zbl | DOI

[14] P. D. M. MacDonald Comment on ”An estimation procedure for mixtures of distributions” by Choi and Bulgren, J. Roy. Statist. Soc. Ser. B, Volume 33 (1971), pp. 326-329

[15] Mahadavi, A.; D. Kundu A new method of generating distribution with an application to exponential distribution, Comm. Statist. Theory Methods, Volume 46 (2017), pp. 6543-6557 | DOI | Zbl

[16] Merovci, F. Transmuted exponentiated exponential distribution, Math. Sci. Appl. E-Notes, Volume 1 (2013), pp. 112-122

[17] Nadarajah, S.; Haghighi, F. An extension of the exponential distribution, Statistics, Volume 45 (2011), pp. 543-558 | DOI

[18] Nassar, M.; Alzaatreh, A.; Mead, M.; Abo-Kasem, O. Alpha power Weibull distribution: Properties and applications, Comm. Statist. Theory Methods, Volume 46 (2017), pp. 10236-10252 | Zbl | DOI

[19] Rasekhi, M.; Alizadeh, M.; Altun, E.; Hamedani, G. G.; Afify, A. Z.; Ahmad, M. The modified exponential distribution with applications, Pakistan J. Statist., Volume 33 (2017), pp. 383-398

[20] Rényi, A. On measures of entropy and information, In: Proc. 4th Berkeley Sympos. Math. Statist. and Prob. (University of California Press, Berkeley), Volume 1961 (1961), pp. 547-561

[21] Ristic, M. M.; Balakrishnan, N. The gamma-exponentiated exponential distribution, J. Stat. Comput. Simul., Volume 82 (2012), pp. 1191-1206 | DOI

[22] Shaked, M.; Shanthikumar, J. G. Stochastic Orders, John Wiley & Sons, New York, 2007

Cité par Sources :