Voir la notice de l'article provenant de la source International Scientific Research Publications
Hassan, Amal S.  1 ; Mohamd, Rokaya E.  1 ; Elgarhy, M.  2 ; Fayomi, Aisha 3
@article{JNSA_2019_12_4_a4, author = {Hassan, Amal S. and Mohamd, Rokaya E. and Elgarhy, M. and Fayomi, Aisha}, title = {Alpha power transformed extended exponential distribution: properties and applications}, journal = {Journal of nonlinear sciences and its applications}, pages = {239-251}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2019}, doi = {10.22436/jnsa.012.04.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.04.05/} }
TY - JOUR AU - Hassan, Amal S. AU - Mohamd, Rokaya E. AU - Elgarhy, M. AU - Fayomi, Aisha TI - Alpha power transformed extended exponential distribution: properties and applications JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 239 EP - 251 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.04.05/ DO - 10.22436/jnsa.012.04.05 LA - en ID - JNSA_2019_12_4_a4 ER -
%0 Journal Article %A Hassan, Amal S. %A Mohamd, Rokaya E. %A Elgarhy, M. %A Fayomi, Aisha %T Alpha power transformed extended exponential distribution: properties and applications %J Journal of nonlinear sciences and its applications %D 2019 %P 239-251 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.04.05/ %R 10.22436/jnsa.012.04.05 %G en %F JNSA_2019_12_4_a4
Hassan, Amal S. ; Mohamd, Rokaya E. ; Elgarhy, M. ; Fayomi, Aisha. Alpha power transformed extended exponential distribution: properties and applications. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 4, p. 239-251. doi : 10.22436/jnsa.012.04.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.04.05/
[1] How to identify a bathtub hazard rate, IEEE Trans. Reliab., Volume 36 (1987), pp. 106-108 | DOI | Zbl
[2] A new family of generalized distributions, J. Stat. Comput. Simul., Volume 81 (2011), pp. 883-898 | DOI
[3] On the Lambert W function, Adv. Comput. Math., Volume 5 (1996), pp. 329-359 | DOI
[4] Goodness-of-Fit Techniques, Marcel Dekker, New York, 1986
[5] The exponentiated generalized extended exponential distribution, J. Data Sci., Volume 14 (2016), pp. 393-413
[6] Alpha power transformed Lindley distribution: Properties and associated inference with application to earthquake data, Ann. Data Sci., Volume 2018 (2018), pp. 1-28 | DOI
[7] A new extension of the exponential distribution, Rev. Colombiana Estadist., Volume 37 (2014), pp. 25-34
[8] Exponentiated exponential family: An alternative to gamma and Weibull distributions, Biom. J., Volume 43 (2001), pp. 117-130 | DOI | Zbl
[9] Generalized exponential distributions, Aust. N. Z. J. Stat., Volume 41 (1999), pp. 173-188 | DOI
[10] Computer generation of random variables with Lindley or Poisson-Lindley distribution via the LambertW function , Math. Comput. Simulation, Volume 81 (2010), pp. 851-859 | DOI
[11] Fiducial distributions and Bayes’ theorem, J. Roy. Statist. Soc. Ser. B, Volume 20 (1958), pp. 102-107
[12] Model Selection, John Wiley & Sons, New York, 1986
[13] Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators, Comput. Statist. Data Anal., Volume 51 (2006), pp. 904-917 | Zbl | DOI
[14] Comment on ”An estimation procedure for mixtures of distributions” by Choi and Bulgren, J. Roy. Statist. Soc. Ser. B, Volume 33 (1971), pp. 326-329
[15] A new method of generating distribution with an application to exponential distribution, Comm. Statist. Theory Methods, Volume 46 (2017), pp. 6543-6557 | DOI | Zbl
[16] Transmuted exponentiated exponential distribution, Math. Sci. Appl. E-Notes, Volume 1 (2013), pp. 112-122
[17] An extension of the exponential distribution, Statistics, Volume 45 (2011), pp. 543-558 | DOI
[18] Alpha power Weibull distribution: Properties and applications, Comm. Statist. Theory Methods, Volume 46 (2017), pp. 10236-10252 | Zbl | DOI
[19] The modified exponential distribution with applications, Pakistan J. Statist., Volume 33 (2017), pp. 383-398
[20] On measures of entropy and information, In: Proc. 4th Berkeley Sympos. Math. Statist. and Prob. (University of California Press, Berkeley), Volume 1961 (1961), pp. 547-561
[21] The gamma-exponentiated exponential distribution, J. Stat. Comput. Simul., Volume 82 (2012), pp. 1191-1206 | DOI
[22] Stochastic Orders, John Wiley & Sons, New York, 2007
Cité par Sources :