The transmuted transmuted-G family: properties and applications
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 4, p. 217-229.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper introduces a new family of continuous distributions called the transmuted transmuted-G family which extends the quadratic rank transmutation map pioneered by Shaw and Buckley [W. T. Shaw, I. R. Buckley, arXiv preprint, $\textbf{2007}$ (2007), 28 pages]. We provide two special models of the new family which can be used effectively to model survival data since they accommodate increasing, decreasing, unimodal, bathtub-shaped and increasing-decreasing-increasing hazard functions. We also provide two new characterization theorems of the proposed family. The estimation of the model parameters is performed by the maximum likelihood method. The flexibility of the proposed family is illustrated by means of two applications to real data.
DOI : 10.22436/jnsa.012.04.03
Classification : 60E05, 62E10, 62E15
Keywords: Characterization, maximum likelihood, moments, transmuted family

Mansour, M. M.  1 ; Abd Elrazik, Enayat M.  1 ; Afify, Ahmed Z.  2 ; Ahsanullah, Mohammad  3 ; Altun, Emrah  4

1 Department of MIS, Yanbu, Taibah University, Saudi Arabia;Department of Statistics, Mathematics and Insurance, Benha University, Egypt
2 Department of Statistics, Mathematics and Insurance, Benha University, Egypt
3 Department of Management Sciences, Rider University NJ, USA
4 Department of Statistics, Bartin University, Bartin 74100, Turkey
@article{JNSA_2019_12_4_a2,
     author = {Mansour, M. M.  and Abd Elrazik, Enayat M.  and Afify, Ahmed Z.  and Ahsanullah, Mohammad  and Altun, Emrah },
     title = {The transmuted {transmuted-G} family: properties and applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {217-229},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2019},
     doi = {10.22436/jnsa.012.04.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.04.03/}
}
TY  - JOUR
AU  - Mansour, M. M. 
AU  - Abd Elrazik, Enayat M. 
AU  - Afify, Ahmed Z. 
AU  - Ahsanullah, Mohammad 
AU  - Altun, Emrah 
TI  - The transmuted transmuted-G family: properties and applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 217
EP  - 229
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.04.03/
DO  - 10.22436/jnsa.012.04.03
LA  - en
ID  - JNSA_2019_12_4_a2
ER  - 
%0 Journal Article
%A Mansour, M. M. 
%A Abd Elrazik, Enayat M. 
%A Afify, Ahmed Z. 
%A Ahsanullah, Mohammad 
%A Altun, Emrah 
%T The transmuted transmuted-G family: properties and applications
%J Journal of nonlinear sciences and its applications
%D 2019
%P 217-229
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.04.03/
%R 10.22436/jnsa.012.04.03
%G en
%F JNSA_2019_12_4_a2
Mansour, M. M. ; Abd Elrazik, Enayat M. ; Afify, Ahmed Z. ; Ahsanullah, Mohammad ; Altun, Emrah . The transmuted transmuted-G family: properties and applications. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 4, p. 217-229. doi : 10.22436/jnsa.012.04.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.04.03/

[1] Afify, A. Z.; Cordeiro, G. M.; Yousof, H. M.; Alzaatreh, A.; Nofal, Z. M. The Kumaraswamy transmuted-G family of distributions: properties and applications, J. Data Sci., Volume 14 (2016), pp. 245-270

[2] Afify, A. Z.; Hamedani, G. G.; Ghosh, I.; Mead, M. E. The transmuted Marshall-Olkin Fréchet distribution: properties and applications, International Journal of Statistics and Probability, Volume 4 (2015), pp. 132-184 | DOI

[3] Afify, A. Z.; Nofal, Z. M.; N. S. Butt Transmuted complementary Weibull geometric distribution , Pak. J. Stat. Oper. Res., Volume 10 (2014), pp. 435-454

[4] Afify, A. Z.; Yousof, H. M.; Butt, N. S.; Hamedani, G. G. The transmuted Weibull-Pareto distribution, Pakistan J. Statist., Volume 32 (2016), pp. 183-206

[5] Afify, A. Z.; Yousof, H. M.; Nadarajah, S. The beta transmuted-H family for lifetime data, Stat. Interface, Volume 10 (2017), pp. 505-520 | Zbl

[6] Al-Hussaini, E. k.; Ahsanullah, M. Exponentiated Distributions, Atlantis Press, Paris, 2015 | DOI

[7] Alizadeh, M.; Yousof, H. M.; Afify, A. Z.; Cordeiro, G. M.; Mansoor, M. The complementary generalized transmuted Poisson-G family of distributions, Austrian J. Statist., Volume 47 (2018), pp. 51-71

[8] Alzaatreh, A.; Lee, C.; Famoye, F. A new method for generating families of continuous distributions , Metron, Volume 71 (2013), pp. 63-79 | DOI | Zbl

[9] Aryal, G. R.; Tsokos, C. P. On the transmuted extreme value distribution with application, Nonlinear Anal., Volume 71 (2009), pp. 1401-1407 | DOI | Zbl

[10] Aryal, G. R.; Tsokos, C. P. Transmuted Weibull distribution: a generalization of the Weibull probability distribution, Eur. J. Pure Appl. Math., Volume 4 (2011), pp. 89-102 | Zbl

[11] Cordeiro, G. M.; Hashimoto, E. M.; Ortega, E. M. M. The McDonald Weibull model, Statistics, Volume 48 (2014), pp. 256-278 | DOI

[12] Elbatal, I.; Aryal, G. On the transmuted additive Weibull distribution, Austrian J. Statist., Volume 42 (2013), pp. 117-132 | DOI

[13] Ghitany, M. E.; Al-Mutairi, D. K.; Balakrishnan, N.; Al-Enezi, L. J. Power Lindley distribution and associated inference, Comput. Statist. Data Anal., Volume 64 (2013), pp. 20-33 | Zbl | DOI

[14] Khan, M. N. The modified beta Weibul distribution, Hacettepe J. Math. Statist., Volume 44 (2015), pp. 1553-1568

[15] Lee, C.; Famoye, F.; Olumolade, O. Beta-Weibull distribution: some properties and applications to censored data, J. Modern Appl. Statist. Methods, Volume 6 (2007), pp. 173-186 | DOI

[16] Lee, E. T.; J. W. Wang Statistical Methods for Survival Data Analysis, John Wiley & Sons, Hoboken, 2003 | DOI

[17] Mansour, M. M.; Mohamed, S. M. A new generalized of transmuted Lindley distribution, Appl. Math. Sci., Volume 9 (2015), pp. 2729-2748

[18] Merovci, F. Transmuted lindley distribution, Int. J. Open Problems Comput. Sci. Math., Volume 6 (2013), pp. 63-72

[19] Merovci, F.; Alizadeh, M.; Hamedani, M. G. G. Another generalized transmuted family of distributions: properties and applications, Austrian J. Statist., Volume 45 (2016), pp. 71-93 | DOI

[20] Merovci, F.; Alizadeh, M.; Yousof, H. M.; Hamedani, G. G. The exponentiated transmuted-G family of distributions: theory and applications, Comm. Statist. Theory Methods, Volume 46 (2017), pp. 10800-10822 | DOI | Zbl

[21] Merovci, F.; Elbatal, I. Transmuted Lindley-geometric distribution and its applications, J. Statist. Appl. Prob., Volume 3 (2014), pp. 77-91

[22] Murthy, D. N. Prabhakar; Xie, M.; Jiang, R. Weibull Models, John Wiley & Sons, Hoboken, 2004

[23] Ramos, M. W. A.; Marinho, P. R. D.; Silva, R. V. da; Cordeiro, G. M. The exponentiated Lomax Poisson distribution with an application to lifetime data, Adv. Appl. Stat., Volume 34 (2013), pp. 107-135 | Zbl

[24] Shaw, W. T.; Buckley, I. R. The alchemy of probability distributions: beyond gram-charlier expansions and a skew-kurtoticnormal distribution from a rank transmutation map, arXiv preprint, Volume 2007 (2007), pp. 1-28

[25] Tahir, M. H.; Cordeiro, G. M. Compounding of distributions: a survey and new generalized classes, J. Statist. Distribut. Appl., Volume 3 (2016), pp. 1-35 | Zbl | DOI

[26] Yousof, H. M.; Afify, A. Z.; Alizadeh, M.; Butt, N. S.; Hamedani, G. G.; Ali, M. M. The transmuted exponentiated generalized-G family of distributions, Pak. J. Stat. Oper. Res., Volume 11 (2015), pp. 441-464

Cité par Sources :