Approximation of general Pexider functional inequalities in fuzzy Banach spaces
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 4, p. 206-216.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we investigate a fuzzy version of a generalized Hyers-Ulam-Rassias type stability for the following Pexider functional inequalities
$ f(x+y)+f(x-y)+g(z)+h(l) \leq kp\left(\frac{2x+z+l}{k}\right) , $
$ f(x+y)+f(x-y) + g(z)+k h(l) \leq kp\left(\frac{ x+ z }{k}+l\right) , $
where $k$ are nonzero real scalars. In the fuzzy normed linear space setting is presented. In this condition, we give an alternative proof of this result in fuzzy Banach space.
DOI : 10.22436/jnsa.012.04.02
Classification : 39B62, 39B52, 46B25
Keywords: Fuzzy approximation, Pexider functional inequality, fuzzy Banach space

Lu, Gang  1 ; Xin, Jincheng  1 ; Jin, Yuanfeng  2 ; Park, Choonkil  3

1 Department of Mathematics, School of Science, ShenYang University of Technology, Shenyang 110870, P. R. China
2 Department of Mathematics, Yanbian University, Yanji 133001, People's Republic of China
3 Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
@article{JNSA_2019_12_4_a1,
     author = {Lu, Gang  and Xin, Jincheng  and Jin, Yuanfeng  and Park, Choonkil },
     title = {Approximation of  general {Pexider} functional inequalities in fuzzy {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {206-216},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2019},
     doi = {10.22436/jnsa.012.04.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.04.02/}
}
TY  - JOUR
AU  - Lu, Gang 
AU  - Xin, Jincheng 
AU  - Jin, Yuanfeng 
AU  - Park, Choonkil 
TI  - Approximation of  general Pexider functional inequalities in fuzzy Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 206
EP  - 216
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.04.02/
DO  - 10.22436/jnsa.012.04.02
LA  - en
ID  - JNSA_2019_12_4_a1
ER  - 
%0 Journal Article
%A Lu, Gang 
%A Xin, Jincheng 
%A Jin, Yuanfeng 
%A Park, Choonkil 
%T Approximation of  general Pexider functional inequalities in fuzzy Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2019
%P 206-216
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.04.02/
%R 10.22436/jnsa.012.04.02
%G en
%F JNSA_2019_12_4_a1
Lu, Gang ; Xin, Jincheng ; Jin, Yuanfeng ; Park, Choonkil . Approximation of  general Pexider functional inequalities in fuzzy Banach spaces. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 4, p. 206-216. doi : 10.22436/jnsa.012.04.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.04.02/

[1] Azadi-Kenary, H.; Lee, J. R.; Park, C. Non-Archimedean stability of an AQQ-functional equation, J. Comput. Anal. Appl., Volume 14 (2012), pp. 211-227 | Zbl

[2] Samanta, T. Bag S. K. Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., Volume 11 (2003), pp. 687-705

[3] Balopoulos, V.; Hatzimichailidis, A. G.; Papadopoulos, B. K. Distance and similarity measures for fuzzy operators, Inform. Sci., Volume 177 (2007), pp. 2336-2348 | DOI

[4] I.-S. Chang Stability of higher ring derivations in fuzzy Banach algebras, J. Computat. Anal. Appl., Volume 14 (2012), pp. 1059-1066 | Zbl

[5] Cheng, S. C.; Mordeson, J. N. Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., Volume 86 (1994), pp. 429-436

[6] Cho, I. G.; Kang, D. S.; Koh, H. J. Stability problems of cubic mappings with the fixed point alternative, J. Computat. Anal. Appl., Volume 14 (2012), pp. 132-142 | Zbl

[7] Cho, Y. J.; Park, C.; Saadati, R. Functional inequalities in non-Archimedean Banach spaces, Appl. Math. Lett., Volume 23 (2010), pp. 1238-1242 | DOI

[8] Gordji, M. Eshaghi; Savadkouhi, M. Bavand; Bidkham, M. Stability of a mixed type additive and quadratic functional equation in non-Archimedean spaces, J. Comput. Anal. Appl., Volume 12 (2010), pp. 454-462 | DOI

[9] Gordji, M. Eshaghi; A. Bodaghi On the stability of quadratic double centralizers on Banach algebras, J. Computat. Anal. Appl., Volume 13 (2011), pp. 724-729 | Zbl

[10] Gordji, M. Eshaghi; Rostami, R. Farokhzad; S. A. R. Hosseinioun Nearly higher derivations in unital C*-algebras, J. Computat. Anal. Appl., Volume 13 (2011), pp. 734-742 | Zbl

[11] Gordji, M. Eshaghi; Gharetapeh, S. Kaboli; Karimi, T.; Rashidi, E.; Aghaei, M. Ternary Jordan derivations on C*-ternary algebras, J. Computat. Anal. Appl., Volume 12 (2010), pp. 463-470

[12] Fang, M.; Lu, G.; D. H. Pei Functional inequalities in generalized quasi-Banach spaces, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 2481-2491 | Zbl

[13] Felbin, C. Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems, Volume 48 (1992), pp. 239-248 | DOI

[14] Gajda, Z. On stability of additive mappings, Internat. J. Math. Math. Sci., Volume 14 (1991), pp. 431-434

[15] P. Găvruţa A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings , J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436 | Zbl | DOI

[16] Hyers, D. H. On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U. S. A., Volume 27 (1941), pp. 222-224 | DOI

[17] Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press Inc., Palm Harbor, 2001

[18] Katsaras, A. K. Fuzzy topological vector spaces II , Fuzzy Sets and Systems, Volume 12 (1984), pp. 143-154 | DOI

[19] Krishna, S. V.; Sarma, K. K. M. Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems, Volume 63 (1994), pp. 207-217 | DOI

[20] Lu, G.; Jiang, Y.; Park, C. Functional inequality in Fréchet spaces, J. Comput. Anal. Appl., Volume 15 (2013), pp. 369-373

[21] Lu, G.; Park, C. Additive functional inequalities in Banach spaces , J. Inequal. Appl., Volume 2012 (2012), pp. 1-10 | DOI

[22] Lu, G.; Park, C. Hyers-Ulam stability of additive set-valued functional equations, Appl. Math. Lett., Volume 24 (2011), pp. 1312-1316 | DOI

[23] Malliavin, P. Stochastic Analysis, Springer-Verlag, Berlin, 1997 | DOI

[24] C.-G. Park Homomorphisms between Poisson JC*-algebra, Bull. Braz. Math. Soc. (N.S.), Volume 36 (2005), pp. 79-97 | Zbl | DOI

[25] Park, C. Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras, Bull. Sci. Math., Volume 132 (2008), pp. 87-96 | DOI

[26] Park, C.; Cho, Y. J.; Azadi-Kenary, H. Orthogonal stability of a generalized quadratic functional equation in non- Archimedean spaces, J. Computat. Anal. Appl., Volume 14 (2012), pp. 526-535

[27] Park, C.; Cho, Y. S.; Han, M.-H. Functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl., Volume 2007 (2007), pp. 1-13 | Zbl | DOI

[28] Park, C.; Jang, S. Y.; Saadati, R. Fuzzy approximate of homomorphisms, J. Comput. Anal. Appl., Volume 14 (2012), pp. 833-841

[29] Rassias, T. M. On the stability of the linear mapping in Banach spaces , Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300 | DOI

[30] Rassias, J. M. On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math., Volume (2)108 (1984), pp. 445-446

[31] Shagholi, S.; Gordji, M. Eshaghi; Savadkouhi, M. Bavand Nearly ternary cubic homomorphism in ternary Fréchet algebras, J. Comput. Anal. Appl., Volume 13 (2011), pp. 1106-1114 | Zbl

[32] Shagholi, S.; Gordji, M. Eshaghi; M. Bavand Savadkouhi Stability of ternary quadratic derivations on ternary Banach algebras , J. Comput. Anal. Appl., Volume 13 (2011), pp. 1097-1105

[33] Ulam, S. M. A Collection of the Mathematical Problems, Interscience Publ., New York, 1960

[34] Xiao, J.-Z.; Zhu, X.-H. Fuzzy normed spaces of operators and its completeness , Fuzzy Sets and Systems, Volume 133 (2003), pp. 389-399 | DOI

Cité par Sources :