Voir la notice de l'article provenant de la source International Scientific Research Publications
Hashemi, E.  1 ; Ghaemi, M. B.  2
@article{JNSA_2019_12_3_a5, author = {Hashemi, E. and Ghaemi, M. B. }, title = {Ekeland's variational principle in complete {quasi-G-metric} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {184-191}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2019}, doi = {10.22436/jnsa.012.03.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.06/} }
TY - JOUR AU - Hashemi, E. AU - Ghaemi, M. B. TI - Ekeland's variational principle in complete quasi-G-metric spaces JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 184 EP - 191 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.06/ DO - 10.22436/jnsa.012.03.06 LA - en ID - JNSA_2019_12_3_a5 ER -
%0 Journal Article %A Hashemi, E. %A Ghaemi, M. B. %T Ekeland's variational principle in complete quasi-G-metric spaces %J Journal of nonlinear sciences and its applications %D 2019 %P 184-191 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.06/ %R 10.22436/jnsa.012.03.06 %G en %F JNSA_2019_12_3_a5
Hashemi, E. ; Ghaemi, M. B. . Ekeland's variational principle in complete quasi-G-metric spaces. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 3, p. 184-191. doi : 10.22436/jnsa.012.03.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.06/
[1] Fixed point theorems for fuzzy mappings in complete metric spaces, Fuzzy Sets and system, Volume 125 (2002), pp. 253-260 | DOI
[2] Fixed points and stationary points of dissipative multivalued maps, Proc. Amer. Math. Soc., Volume 78 (1980), pp. 391-398 | Zbl | DOI
[3] Fixed point theorems for weakly contractive multivalued maps, J. Math. Anal. Appl., Volume 284 (2003), pp. 690-697 | DOI
[4] A generalization of the Caristi-Kirk fixed point theorem and its application to mapping theorems , J. Korean Math. Soc., Volume 31 (1994), pp. 29-48
[5] Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., Volume 215 (1976), pp. 241-251 | DOI
[6] Note on the results with lower semi-continuity, Bull Korean Math. Soc., Volume 39 (2002), pp. 535-541 | DOI
[7] Variational principle and fixed points, in: Set Valued Mappings With Applications in Nonlinear Analysis, Volume 2002 (2002), pp. 129-136
[8] A general ordering and fixed point principle in complete metric spaces, Acta. Sci. Math. (Szeged), Volume 46 (1983), pp. 381-388
[9] Nonconvex minimization problems, Bull. Amer. Math. Soc., Volume 1 (1979), pp. 443-474 | DOI
[10] On the variational principle, J. Math. Anal. Appl., Volume 47 (1974), pp. 324-353 | DOI
[11] Remarques sur les problémes variationnels , C. R. Acad. Sci. Paris Sér. A–B, Volume 275 (1972), pp. 1057-1059
[12] Geometric variational principle, Dissertationes Math. (Rozprawy Mat.), Volume 340 (1995), pp. 55-71
[13] Remarks to an equivalent formulation of Ekelands variational principle, Optimization, Volume 31 (1994), pp. 233-238 | Zbl | DOI
[14] A minimal point theorem in uniform spaces, in: Nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday, Volume 1, 2 (2003), pp. 557-593
[15] Topics in Nonlinear Analysis and Applications, World Scientific Publishing Co., River Edge, 1997 | DOI
[16] Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon., Volume 44 (1996), pp. 381-391
[17] On a minimization theorem, in: Nonlinear Analysis and Convex Analysis (Japanese), Volume 1995 (1995), pp. 59-62
[18] Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., Volume 141 (1989), pp. 177-188 | DOI
[19] A new approach to generalized metric spaces , J. Nonlinear Convex Anal., Volume 7 (2006), pp. 289-392
[20] The drop theorem, the petal theorem and Ekelands variational principle, Nonlinear Anal., Volume 10 (1986), pp. 813-822 | DOI
[21] Fixed point theorems in generalized partially ordered G-metric spaces , Math. Comput. Modelling, Volume 52 (2010), pp. 797-801 | DOI
[22] Contractive mappings, Kannan mappings and metric completeness , Proc. Amer. Math. Soc., Volume 126 (1998), pp. 3117-3124 | DOI | Zbl
[23] Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., Volume 253 (2001), pp. 440-458 | DOI
[24] On DowningKirks theorem , J. Math. Anal. Appl., Volume 286 (2003), pp. 453-458 | DOI
[25] Generalized Caristis fixed point theorems by Bae and others, J. Math. Anal. Appl., Volume 302 (2005), pp. 502-508 | DOI | Zbl
[26] Fixed point theorems and characterizations of metric completeness, Topol. Methods Nonlinear Anal., Volume 8 (1996), pp. 371-382
[27] Existence theorems generalizing fixed point theorems for multivalued mappings , in: Fixed Point Theory and Applications, Volume 1991 (1991), pp. 397-406 | DOI
[28] Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000
[29] Viscosity solutions of HamiltonJacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl., Volume 163 (1992), pp. 345-392 | DOI
[30] On Ekelands variational principle and a minimax theorem, J. Math. Anal. Appl., Volume 205 (1997), pp. 239-250 | DOI
Cité par Sources :