The odd Frechet inverse Weibull distribution with application
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 3, p. 165-172.

Voir la notice de l'article provenant de la source International Scientific Research Publications

A new three parameters distribution called the odd Frechet inverse Weibull (OFIW) distribution is introduced. The reliability analysis of the new model is discussed. Several of its mathematical properties are studied. The maximum likelihood (ML) estimation are derived for OFIW parameters. The importance and flexibility of the OFIW is assessed using one real data set.
DOI : 10.22436/jnsa.012.03.04
Classification : 60E05, 62E10, 62N05
Keywords: Odd Frechet family, inverse Weibull distribution, order statistics, maximum likelihood

Fayomi, Aisha  1

1 Statistics Department, Faculty of Science, King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia
@article{JNSA_2019_12_3_a3,
     author = {Fayomi, Aisha },
     title = {The odd {Frechet} inverse {Weibull} distribution with application},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {165-172},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2019},
     doi = {10.22436/jnsa.012.03.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.04/}
}
TY  - JOUR
AU  - Fayomi, Aisha 
TI  - The odd Frechet inverse Weibull distribution with application
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 165
EP  - 172
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.04/
DO  - 10.22436/jnsa.012.03.04
LA  - en
ID  - JNSA_2019_12_3_a3
ER  - 
%0 Journal Article
%A Fayomi, Aisha 
%T The odd Frechet inverse Weibull distribution with application
%J Journal of nonlinear sciences and its applications
%D 2019
%P 165-172
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.04/
%R 10.22436/jnsa.012.03.04
%G en
%F JNSA_2019_12_3_a3
Fayomi, Aisha . The odd Frechet inverse Weibull distribution with application. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 3, p. 165-172. doi : 10.22436/jnsa.012.03.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.04/

[1] Abbas, S.; Taqi, S. A.; Mustafa, F.; Murtaza, M.; Shahbaz, M. Q. Topp-Leone inverse Weibull distribution: theory and application, Eur. J. Pure Appl. Math., Volume 10 (2017), pp. 1005-1022 | Zbl

[2] Almalki, S. J.; Yuan, J. A new modified Weibull distribution, Reliab. Eng. Sys. Safety, Volume 111 (2013), pp. 164-170 | DOI

[3] Gusmao, F. R. S. de; Ortega, E. M. M.; Cordeiro, G. M. The generalized inverse Weibull distribution, Statist. Papers, Volume 52 (2011), pp. 591-619 | DOI

[4] Elbatal, I.; Gebaly, Y. M. El; Amin, E. A. The beta generalized inverse Weibull geometric distribution and its applications, Pak. J. Stat. Oper. Res., Volume 13 (2017), pp. 75-90

[5] Gross, A. J.; Clark, V. A. Survival distributions: Reliability applications in the biomedical sciences , John Wiley & Sons, New York, 1975 | Zbl

[6] Hanook, S.; Shahbaz, M. Q.; Mohsin, M.; Kibria, B. M. G. A Note On beta inverse Weibull distribution, Comm. Statist. Theory Methods, Volume 42 (2013), pp. 320-335 | DOI | Zbl

[7] Haq, M.; Elgarhy, M. The odd Fréchet-G family of probability distributions, J. Statist. Appl. Prob., Volume 7 (2018), pp. 185-201

[8] Jiang, R.; Murthy, D. N. P.; Ji, P. Models involving two inverse Weibull distributions, Reliab. Eng. Sys. Safety, Volume 73 (2001), pp. 73-81 | DOI

[9] Jiang, R.; Zuo, M. J.; Li, H. X. Weibull and inverse Weibull mixture models allowing negative weights, Reliab. Eng. Sys. Safety, Volume 66 (1999), pp. 227-234 | DOI

[10] Keller, A. Z.; Kamath, A. R. R. Alternative reliability models for mechanical systems, Third Int. Conf. Reliab. Maintainabil. (Toulse, France), Volume 1982 (1982), pp. 411-415

[11] Khan, M. S.; R. King Modified inverse Weibull distribution , J. Statist. Appl. Prob., Volume 1 (2012), pp. 115-132

[12] Khan, M. S.; King, R.; Hudson, I. Characterizations of the transmuted Inverse Weibull distribution, Anziam J., Volume 55 (2014), pp. 197-217 | Zbl

[13] Khan, M. S.; Pasha, G. R.; Pasha, A. H. Theoretical analysis of inverse Weibull distribution, WSEAS Tran. Math., Volume 7 (2008), pp. 30-38

[14] Lindley, D. V. Fiducial distributions and Bayes’ theorem, J. Roy. Statist. Soc. Ser. B, Volume 20 (1958), pp. 102-107

[15] Nelson, W. Applied Life Data Analysis New York, John Wiley & Sons, New York, 1982

[16] Shahbaz, M. Q.; Shahbaz, S.; Butt, N. S. The Kumaraswamy inverse Weibull Distribution, Pak. J. Stat. Oper. Res., Volume 3 (2012), pp. 479-489

[17] Shanker, R. Aradhana distribution and its Applications, Int. J. Statist. Appl., Volume 6 (2016), pp. 23-34 | DOI

[18] Shanker, R. Sujatha distribution and its Applications, Statist. Transition-New Series, Volume 17 (2016), pp. 1-20

[19] Shanker, R.; Shukla, K. K.; Fesshaye, H. A generalization of Sujatha distribution and its applications with real lifetime data, J. Institute Sci. Tech., Volume 22 (2017), pp. 66-83

Cité par Sources :