Voir la notice de l'article provenant de la source International Scientific Research Publications
Fayomi, Aisha  1
@article{JNSA_2019_12_3_a3, author = {Fayomi, Aisha }, title = {The odd {Frechet} inverse {Weibull} distribution with application}, journal = {Journal of nonlinear sciences and its applications}, pages = {165-172}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2019}, doi = {10.22436/jnsa.012.03.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.04/} }
TY - JOUR AU - Fayomi, Aisha TI - The odd Frechet inverse Weibull distribution with application JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 165 EP - 172 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.04/ DO - 10.22436/jnsa.012.03.04 LA - en ID - JNSA_2019_12_3_a3 ER -
%0 Journal Article %A Fayomi, Aisha %T The odd Frechet inverse Weibull distribution with application %J Journal of nonlinear sciences and its applications %D 2019 %P 165-172 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.04/ %R 10.22436/jnsa.012.03.04 %G en %F JNSA_2019_12_3_a3
Fayomi, Aisha . The odd Frechet inverse Weibull distribution with application. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 3, p. 165-172. doi : 10.22436/jnsa.012.03.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.04/
[1] Topp-Leone inverse Weibull distribution: theory and application, Eur. J. Pure Appl. Math., Volume 10 (2017), pp. 1005-1022 | Zbl
[2] A new modified Weibull distribution, Reliab. Eng. Sys. Safety, Volume 111 (2013), pp. 164-170 | DOI
[3] The generalized inverse Weibull distribution, Statist. Papers, Volume 52 (2011), pp. 591-619 | DOI
[4] The beta generalized inverse Weibull geometric distribution and its applications, Pak. J. Stat. Oper. Res., Volume 13 (2017), pp. 75-90
[5] Survival distributions: Reliability applications in the biomedical sciences , John Wiley & Sons, New York, 1975 | Zbl
[6] A Note On beta inverse Weibull distribution, Comm. Statist. Theory Methods, Volume 42 (2013), pp. 320-335 | DOI | Zbl
[7] The odd Fréchet-G family of probability distributions, J. Statist. Appl. Prob., Volume 7 (2018), pp. 185-201
[8] Models involving two inverse Weibull distributions, Reliab. Eng. Sys. Safety, Volume 73 (2001), pp. 73-81 | DOI
[9] Weibull and inverse Weibull mixture models allowing negative weights, Reliab. Eng. Sys. Safety, Volume 66 (1999), pp. 227-234 | DOI
[10] Alternative reliability models for mechanical systems, Third Int. Conf. Reliab. Maintainabil. (Toulse, France), Volume 1982 (1982), pp. 411-415
[11] Modified inverse Weibull distribution , J. Statist. Appl. Prob., Volume 1 (2012), pp. 115-132
[12] Characterizations of the transmuted Inverse Weibull distribution, Anziam J., Volume 55 (2014), pp. 197-217 | Zbl
[13] Theoretical analysis of inverse Weibull distribution, WSEAS Tran. Math., Volume 7 (2008), pp. 30-38
[14] Fiducial distributions and Bayes’ theorem, J. Roy. Statist. Soc. Ser. B, Volume 20 (1958), pp. 102-107
[15] Applied Life Data Analysis New York, John Wiley & Sons, New York, 1982
[16] The Kumaraswamy inverse Weibull Distribution, Pak. J. Stat. Oper. Res., Volume 3 (2012), pp. 479-489
[17] Aradhana distribution and its Applications, Int. J. Statist. Appl., Volume 6 (2016), pp. 23-34 | DOI
[18] Sujatha distribution and its Applications, Statist. Transition-New Series, Volume 17 (2016), pp. 1-20
[19] A generalization of Sujatha distribution and its applications with real lifetime data, J. Institute Sci. Tech., Volume 22 (2017), pp. 66-83
Cité par Sources :