Voir la notice de l'article provenant de la source International Scientific Research Publications
Alesemi, Meshari  1 ; El-Moneam, M. A.  1 ; Bader, Bader S.  1 ; Aly, E. S. 1
@article{JNSA_2019_12_3_a1, author = {Alesemi, Meshari and El-Moneam, M. A. and Bader, Bader S. and Aly, E. S.}, title = {The particular solutions of some types of {Euler-Cauchy} {ODE} using the differential transform method}, journal = {Journal of nonlinear sciences and its applications}, pages = {146-151}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2019}, doi = {10.22436/jnsa.012.03.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.02/} }
TY - JOUR AU - Alesemi, Meshari AU - El-Moneam, M. A. AU - Bader, Bader S. AU - Aly, E. S. TI - The particular solutions of some types of Euler-Cauchy ODE using the differential transform method JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 146 EP - 151 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.02/ DO - 10.22436/jnsa.012.03.02 LA - en ID - JNSA_2019_12_3_a1 ER -
%0 Journal Article %A Alesemi, Meshari %A El-Moneam, M. A. %A Bader, Bader S. %A Aly, E. S. %T The particular solutions of some types of Euler-Cauchy ODE using the differential transform method %J Journal of nonlinear sciences and its applications %D 2019 %P 146-151 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.02/ %R 10.22436/jnsa.012.03.02 %G en %F JNSA_2019_12_3_a1
Alesemi, Meshari ; El-Moneam, M. A. ; Bader, Bader S. ; Aly, E. S. The particular solutions of some types of Euler-Cauchy ODE using the differential transform method. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 3, p. 146-151. doi : 10.22436/jnsa.012.03.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.02/
[1] A formula for solving a special case of Euler-Cauchy ODE., Int. Math. Forum, Volume 4 (2009), pp. 1997-2000 | Zbl
[2] One dimensional differential transform method for some higher order boundary value problems in finite domain, Int. J. Contemp. Math. Sci., Volume 7 (2012), pp. 263-272 | Zbl
[3] Applying differential transform method to nonlinear partial differential equations: a modified approach, Appl. Appl. Math., Volume 7 (2012), pp. 155-163 | Zbl
[4] Determination of convergence intervals of the series solutions of EmdenFowler equations using polytropes and isothermal spheres, Phy. Lett. A, Volume 372 (2008), pp. 3555-3561 | Zbl | DOI
[5] A new algorithm for solving linear ordinary differential equations, World Appl. Sci. J., Volume 15 (2011), pp. 1774-1779
[6] Status of the differential transformation method, Appl. Math. Comput., Volume 218 (2012), pp. 10158-10170 | DOI | Zbl
[7] Differential transform method for quadratic Riccati differential equation, Int. J. Nonlinear Sci., Volume 9 (2010), pp. 444-447
[8] A new algorithm for calculating one dimensional differential transform of nonlinear functions, Appl. Math. Comput., Volume 195 (2008), pp. 799-805 | DOI | Zbl
[9] Useful Formulas for One-dimensional Differential Transform, Britsh J. Appl. Sci. Tech., Volume 18 (2016), pp. 1-8 | DOI
[10] Application of differential transformation method to linear sixth-order boundary value problems, Appl. Math. Sci. (Ruse), Volume 1 (2007), pp. 51-58 | Zbl
[11] Approximate Solutions of a Class of Nonlinear Differential Equations by Using Differential Transformation Method, Int. J. Pure Appl. Math., Volume 30 (2006), pp. 403-407
[12] Differential transforms and circuit theory, Circuit Theory Appl., Volume 10 (2008), pp. 265-276 | DOI
[13] The Solution of Euler-Cauchy Equation Using Laplace Transform, Int. J. math. Anal., Volume 9 (2015), pp. 2611-2618
[14] The Reduction of Order on Cauchy-Euler Equation with a Bulge Function, Appl. Math. Sci., Volume 9 (2015), pp. 1139-1143
[15] Solution of differential types of the linear and nonlinear higher-order boundary value problems by differential transformation method, Eur. J. Pure Appl. Math., Volume 2 (2009), pp. 426-447
[16] Solving nonlinear Lane-Emden type equations with unsupervised combined artificial neural networks, Int. J. Industrial Mathematics, Volume 5 (2013), pp. 1-12
[17] Aproximate analytical solution for the isothermal Lane Emden equation in a spherical geometry, Revist Mexicanade Astronmiay Atrofisca, Volume 15 (2015), pp. 173-180
[18] A new algorithm for solving differential equations of LaneEmden type, Applied Math. Comput., Volume 118 (2001), pp. 287-310 | DOI
[19] The modified decomposition method for analytic treatment of differential equations, Appl. Math. Comput., Volume 173 (2006), pp. 165-176 | DOI
[20] Solutions of singular IVPs of LaneEmden type by the variational iteration method, Nonlinear Anal., Volume 70 (2009), pp. 2480-2484 | DOI
[21] Some oscillation criteria for second order nonlinear functional ordinary differential equations, Acta Math. Sci. Ser. B (Engl. Ed.), Volume 27 (2007), pp. 602-610 | DOI
[22] The oscillatory behavior of second order nonlinear functional differential equations, Arab. J. Sci. Eng. Sect. A Sci., Volume 31 (2006), pp. 23-30
[23] Differential transformation and its applications for electrical circuits, Huarjung University Press, wuuhahn, 1986
Cité par Sources :