The particular solutions of some types of Euler-Cauchy ODE using the differential transform method
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 3, p. 146-151.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we apply the differential transform method to find the particular solutions of some types of Euler-Cauchy ordinary differential equations. The first model is a special case of the nonhomogeneous $n^{\rm th}$ order ordinary differential equations of Euler-Cauchy equation. The second model under consideration in this paper is the nonhomogeneous second order differential equation of Euler-Cauchy equation with a bulge function. This study showed that this method is powerful and efficient in finding the particular solution for Euler-Cauchy ODE and capable of reducing the size of calculations comparing with other methods.
DOI : 10.22436/jnsa.012.03.02
Classification : 65L05
Keywords: Differential equations, differential transform method, Euler-Cauchy equations

Alesemi, Meshari  1 ; El-Moneam, M. A.  1 ; Bader, Bader S.  1 ; Aly, E. S. 1

1 Mathematics Department, Faculty of Science, Jazan University, Jazan, Kingdom of Saudi Arabia
@article{JNSA_2019_12_3_a1,
     author = {Alesemi, Meshari  and El-Moneam, M. A.  and Bader, Bader S.  and Aly, E. S.},
     title = {The particular solutions of some types of {Euler-Cauchy} {ODE} using the 	differential transform method},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {146-151},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2019},
     doi = {10.22436/jnsa.012.03.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.02/}
}
TY  - JOUR
AU  - Alesemi, Meshari 
AU  - El-Moneam, M. A. 
AU  - Bader, Bader S. 
AU  - Aly, E. S.
TI  - The particular solutions of some types of Euler-Cauchy ODE using the 	differential transform method
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 146
EP  - 151
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.02/
DO  - 10.22436/jnsa.012.03.02
LA  - en
ID  - JNSA_2019_12_3_a1
ER  - 
%0 Journal Article
%A Alesemi, Meshari 
%A El-Moneam, M. A. 
%A Bader, Bader S. 
%A Aly, E. S.
%T The particular solutions of some types of Euler-Cauchy ODE using the 	differential transform method
%J Journal of nonlinear sciences and its applications
%D 2019
%P 146-151
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.02/
%R 10.22436/jnsa.012.03.02
%G en
%F JNSA_2019_12_3_a1
Alesemi, Meshari ; El-Moneam, M. A. ; Bader, Bader S. ; Aly, E. S. The particular solutions of some types of Euler-Cauchy ODE using the 	differential transform method. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 3, p. 146-151. doi : 10.22436/jnsa.012.03.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.02/

[1] Abdualrab, M. S. A formula for solving a special case of Euler-Cauchy ODE., Int. Math. Forum, Volume 4 (2009), pp. 1997-2000 | Zbl

[2] J. Ali One dimensional differential transform method for some higher order boundary value problems in finite domain, Int. J. Contemp. Math. Sci., Volume 7 (2012), pp. 263-272 | Zbl

[3] Alquran, M. T. Applying differential transform method to nonlinear partial differential equations: a modified approach, Appl. Appl. Math., Volume 7 (2012), pp. 155-163 | Zbl

[4] Aslanov, A. Determination of convergence intervals of the series solutions of EmdenFowler equations using polytropes and isothermal spheres, Phy. Lett. A, Volume 372 (2008), pp. 3555-3561 | Zbl | DOI

[5] Batiha, K.; Batiha, B. A new algorithm for solving linear ordinary differential equations, World Appl. Sci. J., Volume 15 (2011), pp. 1774-1779

[6] Bervillier, C. Status of the differential transformation method, Appl. Math. Comput., Volume 218 (2012), pp. 10158-10170 | DOI | Zbl

[7] Biazar, J.; Eslami, M. Differential transform method for quadratic Riccati differential equation, Int. J. Nonlinear Sci., Volume 9 (2010), pp. 444-447

[8] Chang, S.-H.; Chang, I.-L. A new algorithm for calculating one dimensional differential transform of nonlinear functions, Appl. Math. Comput., Volume 195 (2008), pp. 799-805 | DOI | Zbl

[9] Elmabrouk, E. A.; Abdewahid, F. Useful Formulas for One-dimensional Differential Transform, Britsh J. Appl. Sci. Tech., Volume 18 (2016), pp. 1-8 | DOI

[10] ürk, V. S. Ert Application of differential transformation method to linear sixth-order boundary value problems, Appl. Math. Sci. (Ruse), Volume 1 (2007), pp. 51-58 | Zbl

[11] Ertürk, V. S. Approximate Solutions of a Class of Nonlinear Differential Equations by Using Differential Transformation Method, Int. J. Pure Appl. Math., Volume 30 (2006), pp. 403-407

[12] Pukhov, G. G. Ev Differential transforms and circuit theory, Circuit Theory Appl., Volume 10 (2008), pp. 265-276 | DOI

[13] Ghil, B.; Kim, H. The Solution of Euler-Cauchy Equation Using Laplace Transform, Int. J. math. Anal., Volume 9 (2015), pp. 2611-2618

[14] Haarsa, P.; S. Pothat The Reduction of Order on Cauchy-Euler Equation with a Bulge Function, Appl. Math. Sci., Volume 9 (2015), pp. 1139-1143

[15] Hassan, I. H. A. H.; Ertürk, V. S. Solution of differential types of the linear and nonlinear higher-order boundary value problems by differential transformation method, Eur. J. Pure Appl. Math., Volume 2 (2009), pp. 426-447

[16] Parand, K.; Roozbahani, Z.; Babolghani, F. Bayat Solving nonlinear Lane-Emden type equations with unsupervised combined artificial neural networks, Int. J. Industrial Mathematics, Volume 5 (2013), pp. 1-12

[17] Soliman, M. A.; Al-Zeghayer, Y. Aproximate analytical solution for the isothermal Lane Emden equation in a spherical geometry, Revist Mexicanade Astronmiay Atrofisca, Volume 15 (2015), pp. 173-180

[18] Wazwas, A.-M. A new algorithm for solving differential equations of LaneEmden type, Applied Math. Comput., Volume 118 (2001), pp. 287-310 | DOI

[19] Wazwas, A.-M. The modified decomposition method for analytic treatment of differential equations, Appl. Math. Comput., Volume 173 (2006), pp. 165-176 | DOI

[20] Yildrim, A.; Özis, T. Solutions of singular IVPs of LaneEmden type by the variational iteration method, Nonlinear Anal., Volume 70 (2009), pp. 2480-2484 | DOI

[21] Zayed, E. M. E.; El-Moneam, M. A. Some oscillation criteria for second order nonlinear functional ordinary differential equations, Acta Math. Sci. Ser. B (Engl. Ed.), Volume 27 (2007), pp. 602-610 | DOI

[22] Zayed, E. M. E.; Grace, S. R.; El-Metwally, H.; El-Moneam, M. A. The oscillatory behavior of second order nonlinear functional differential equations, Arab. J. Sci. Eng. Sect. A Sci., Volume 31 (2006), pp. 23-30

[23] Zhou, J. K. Differential transformation and its applications for electrical circuits, Huarjung University Press, wuuhahn, 1986

Cité par Sources :