A new extension of exponential distribution with statistical properties and applications
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 3, p. 135-145.

Voir la notice de l'article provenant de la source International Scientific Research Publications

A new extension of exponential distribution, named as the $\textit{Type I half logistic exponential distribution}$ is introduced in this paper. Explicit expressions for the moments, probability weighted, quantile function, mean deviation, order statistics, and Renyi entropy are investigated. Parameter estimates of the new distribution are obtained based on maximum likelihood procedure. Two real data sets are employed to show the usefulness of the new distribution.
DOI : 10.22436/jnsa.012.03.01
Classification : 60E05, 62E10, 62N05
Keywords: Exponential distribution, maximum likelihood method, moments, order statistics, type I half logistic-G distributions

Almarashi, Abdullah M.  1 ; Elgarhy, M.  2 ; Elsehetry, Mamhoud M.  3 ; Golam Kibria, B. M.  4 ; Algarni, Ali  1

1 Statistics Department, Faculty of Science, King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia
2 Vice Presidency for Graduate Studies and Scientific Research, University of Jeddah, Jeddah, KSA
3 Institute of Statistical Studies and Research (ISSR), Department of Mathematical Statistics, Cairo University, Egypt
4 Department of Mathematics and Statistics, Florida International University, Miami, FL 33199, USA
@article{JNSA_2019_12_3_a0,
     author = {Almarashi, Abdullah  M.  and Elgarhy, M.  and Elsehetry, Mamhoud M.  and Golam Kibria, B. M.  and Algarni, Ali },
     title = {A new extension of exponential distribution with statistical properties and applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {135-145},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2019},
     doi = {10.22436/jnsa.012.03.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.01/}
}
TY  - JOUR
AU  - Almarashi, Abdullah  M. 
AU  - Elgarhy, M. 
AU  - Elsehetry, Mamhoud M. 
AU  - Golam Kibria, B. M. 
AU  - Algarni, Ali 
TI  - A new extension of exponential distribution with statistical properties and applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 135
EP  - 145
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.01/
DO  - 10.22436/jnsa.012.03.01
LA  - en
ID  - JNSA_2019_12_3_a0
ER  - 
%0 Journal Article
%A Almarashi, Abdullah  M. 
%A Elgarhy, M. 
%A Elsehetry, Mamhoud M. 
%A Golam Kibria, B. M. 
%A Algarni, Ali 
%T A new extension of exponential distribution with statistical properties and applications
%J Journal of nonlinear sciences and its applications
%D 2019
%P 135-145
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.01/
%R 10.22436/jnsa.012.03.01
%G en
%F JNSA_2019_12_3_a0
Almarashi, Abdullah  M. ; Elgarhy, M. ; Elsehetry, Mamhoud M. ; Golam Kibria, B. M. ; Algarni, Ali . A new extension of exponential distribution with statistical properties and applications. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 3, p. 135-145. doi : 10.22436/jnsa.012.03.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.03.01/

[1] Almarashi, A. M.; M. Elgarhy A new muth generated family of distributions with applications , J. Nonlinear Sci. Appl., Volume 11 (2018), pp. 1171-1184

[2] Alzaatreh, A.; Lee, C.; F. Famoye A new method for generating families of continuous distributions, Metron, Volume 71 (2013), pp. 63-79 | DOI | Zbl

[3] Bourguignon, M.; Silva, R. B.; G. M. Cordeiro The Weibull–G family of probability distributions , J. Data Sci., Volume 12 (2014), pp. 53-68

[4] Cordeiro, G. M.; Alizadeh, M.; Marinho, P. R. D. The type I half-logistic family of distributions, J. Stat. Comput. Simul., Volume 86 (2015), pp. 707-728 | DOI

[5] Cordeiro, G. M.; Alizadeh, M.; Ortega, E. M. M. The exponentiated half-logistic family of distributions: Properties and applications, J. Probab. Stat., Volume 2014 (2014), pp. 1-21 | Zbl

[6] Cordeiro, G. M.; Castro, M. de A new family of generalized distributions, J. Stat. Comput. Simul., Volume 81 (2011), pp. 883-893 | DOI

[7] H. A. David Order statistics, John Wiley & Sons, New York, 1981

[8] Elgarhy, M.; Haq, M.; Ozel, G. A new exponentiated extended family of distributions with Applications, Gazi University J. Sci., Volume 30 (2017), pp. 101-115

[9] Elgarhy, M.; Hassan, A. S.; M. Rashed Garhy-generated family of distributions with application, Math. Theory Model., Volume 6 (2016), pp. 1-15

[10] Eugene, N.; Lee, C.; Famoye, F. The beta-normal distribution and its applications, Commun. Stat. Theory Methods, Volume 31 (2002), pp. 497-512 | DOI

[11] Haq, M.; M. Elgarhy The odd Frechet-G family of probability distributions, J. Stat. Appl. Prob., Volume 7 (2018), pp. 185-201

[12] Hassan, A. S.; M. Elgarhy A New family of exponentiated Weibull-generated distributions, Int. J. Math. Appl., Volume 4 (2016), pp. 135-148

[13] Hassan, A. S.; Elgarhy, M. Kumaraswamy Weibull-generated family of distributions with applications , Adv. Appl. Stat., Volume 48 (2016), pp. 205-239 | Zbl

[14] Hassan, A. S.; Elgarhy, M.; M. Shakil Type II half Logistic family of distributions with applications , Pak. J. Stat. Oper. Res., Volume 13 (2017), pp. 245-264 | DOI

[15] Kundu, D.; M. Z. Raqab Estimation of R = P (Y < X) for three-parameter Weibull distribution, Stat. Prob. Lett., Volume 79 (2009), pp. 1839-1846 | Zbl | DOI

[16] Ristic, M. M.; N. Balakrishnan The gamma-exponentiated exponential distribution, J. Stat. Comput. Simul., Volume 82 (2012), pp. 1191-1206 | DOI

[17] Zografos, K.; Balakrishnan, N. On families of beta- and generalized gamma-generated distributions and associated inference, Statistical Methodology, Volume 6 (2009), pp. 344-362 | Zbl | DOI

Cité par Sources :