On the rational difference equation $y_{{n+1}}={\frac{\alpha _{{0}}y_{{n}}+\alpha _{{1}}y_{{n-p}}+\alpha _{{2}}y_{{n-q}}+\alpha _{{3}}y_{{n-r}}+\alpha _{{4}}y_{{n-s}}+\alpha _{{5}}y_{{n-t}}}{\beta _{{0}}y_{{n}}+\beta _{{1}}y_{{n-p}}+\beta _{{2}}y_{{n-q}}+\beta _{{3}}y_{{n-r}}+\beta _{{4}}y_{{n-s}}+\beta _{{5}}y_{{n-t}}}}$
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 2, p. 102-119.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we examine and explore the boundedness, periodicity, and global stability of the positive solutions of the rational difference equation
$ y_{{n+1}}={\frac{\alpha _{{0}}y_{{n}}+\alpha _{{1}}y_{{n-p}}+\alpha _{{2}}y_{% {n-q}}+\alpha _{{3}}y_{{n-r}}+\alpha _{{4}}y_{{n-s}}+\alpha _{{5}}y_{{n-t}}}{% \beta _{{0}}y_{{n}}+\beta _{{1}}y_{{n-p}}+\beta _{{2}}y_{{n-q}}+\beta _{{3}% }y_{{n-r}}+\beta _{{4}}y_{{n-s}}+\beta _{{5}}y_{{n-t}}}}, $
where the coefficients ${ \alpha _{i},\beta _{i}\in (0,\infty ),\ i=0,1,2,3,4,5},$ and $p,q,r,s,$ and $t$ are positive integers. The initial conditions $y_{-t} ,$ $\ldots, y_{-s} ,\ldots, y_{-r} ,\ldots, y_{-q} ,\ldots, y_{{% -p}} ,\ldots, y_{-1} , y_{0}$ are arbitrary positive real numbers such that $% p$. Some numerical examples will be given to illustrate our result.
DOI : 10.22436/jnsa.012.02.04
Classification : 39A10, 39A11, 39A99, 34C99
Keywords: Difference equation, boundedness, prime, period two solution, stability

El-Moneam, M. A. 1 ; Aly, E. S.  1 ; Aiyashi, M. A.  1

1 Mathematics Department, Faculty of Science, Jazan University, Jazan, Kingdom of Saudi Arabia
@article{JNSA_2019_12_2_a3,
     author = {El-Moneam, M. A. and Aly, E. S.  and Aiyashi, M. A. },
     title = {On the rational difference equation \(y_{{n+1}}={\frac{\alpha _{{0}}y_{{n}}+\alpha _{{1}}y_{{n-p}}+\alpha _{{2}}y_{{n-q}}+\alpha _{{3}}y_{{n-r}}+\alpha _{{4}}y_{{n-s}}+\alpha _{{5}}y_{{n-t}}}{\beta _{{0}}y_{{n}}+\beta _{{1}}y_{{n-p}}+\beta _{{2}}y_{{n-q}}+\beta _{{3}}y_{{n-r}}+\beta _{{4}}y_{{n-s}}+\beta _{{5}}y_{{n-t}}}}\)},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {102-119},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2019},
     doi = {10.22436/jnsa.012.02.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.04/}
}
TY  - JOUR
AU  - El-Moneam, M. A.
AU  - Aly, E. S. 
AU  - Aiyashi, M. A. 
TI  - On the rational difference equation \(y_{{n+1}}={\frac{\alpha _{{0}}y_{{n}}+\alpha _{{1}}y_{{n-p}}+\alpha _{{2}}y_{{n-q}}+\alpha _{{3}}y_{{n-r}}+\alpha _{{4}}y_{{n-s}}+\alpha _{{5}}y_{{n-t}}}{\beta _{{0}}y_{{n}}+\beta _{{1}}y_{{n-p}}+\beta _{{2}}y_{{n-q}}+\beta _{{3}}y_{{n-r}}+\beta _{{4}}y_{{n-s}}+\beta _{{5}}y_{{n-t}}}}\)
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 102
EP  - 119
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.04/
DO  - 10.22436/jnsa.012.02.04
LA  - en
ID  - JNSA_2019_12_2_a3
ER  - 
%0 Journal Article
%A El-Moneam, M. A.
%A Aly, E. S. 
%A Aiyashi, M. A. 
%T On the rational difference equation \(y_{{n+1}}={\frac{\alpha _{{0}}y_{{n}}+\alpha _{{1}}y_{{n-p}}+\alpha _{{2}}y_{{n-q}}+\alpha _{{3}}y_{{n-r}}+\alpha _{{4}}y_{{n-s}}+\alpha _{{5}}y_{{n-t}}}{\beta _{{0}}y_{{n}}+\beta _{{1}}y_{{n-p}}+\beta _{{2}}y_{{n-q}}+\beta _{{3}}y_{{n-r}}+\beta _{{4}}y_{{n-s}}+\beta _{{5}}y_{{n-t}}}}\)
%J Journal of nonlinear sciences and its applications
%D 2019
%P 102-119
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.04/
%R 10.22436/jnsa.012.02.04
%G en
%F JNSA_2019_12_2_a3
El-Moneam, M. A.; Aly, E. S. ; Aiyashi, M. A. . On the rational difference equation \(y_{{n+1}}={\frac{\alpha _{{0}}y_{{n}}+\alpha _{{1}}y_{{n-p}}+\alpha _{{2}}y_{{n-q}}+\alpha _{{3}}y_{{n-r}}+\alpha _{{4}}y_{{n-s}}+\alpha _{{5}}y_{{n-t}}}{\beta _{{0}}y_{{n}}+\beta _{{1}}y_{{n-p}}+\beta _{{2}}y_{{n-q}}+\beta _{{3}}y_{{n-r}}+\beta _{{4}}y_{{n-s}}+\beta _{{5}}y_{{n-t}}}}\). Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 2, p. 102-119. doi : 10.22436/jnsa.012.02.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.04/

[1] Elabbasy, E. M.; El-Metwally, H.; Elsayed, E. M. On the difference equation \(x_{n+1} = ax_n - bx_n/ (cx_n - dx_{n-1})\), Adv. Difference Equ., Volume 2006 (2006), pp. 1-10

[2] Elabbasy, E. M.; El-Metwally, H.; E. M. Elsayed On the difference equation \(x_{n+1} = (\alpha x_{n-l} + \beta x_{n-k}) / (Ax_{n-l} + Bx_{n-k})\), Acta Math. Vietnam., Volume 33 (2008), pp. 85-94

[3] El-Moneam, M. A.; S. O. Alamoudy On study of the asymptotic behavior of some rational difference equations , Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., Volume 21 (2014), pp. 89-109

[4] E. M. Elsayed On the global attractivity and periodic character of a recursive sequence, Opuscula Math., Volume 30 (2010), pp. 431-446 | Zbl

[5] Grove, E. A.; Ladas, G. Periodicities in nonlinear difference equations, Chapman & Hall/CRC, Boca Raton, 2005

[6] Li, W. T.; H. R. Sun Dynamics of a rational difference equation, Appl. Math. Comput., Volume 163 (2005), pp. 577-591 | DOI

[7] Obaid, M. A.; Elsayed, E. M.; El-Dessoky, M. M. Global attractivity and periodic character of difference equation of order four, Discrete Dyn. Nat. Soc., Volume 2012 (2012), pp. 1-20 | Zbl

[8] Saleh, M.; Abu-Baha, S. Dynamics of a higher order rational difference equation, Appl. Math. Comput., Volume 181 (2006), pp. 84-102 | DOI

[9] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1} = (D+ \alpha x_n + \beta x_{n-1} + \gamma x_{n-2})/(Ax_n + Bxn-1 + Cx_{n-2})\) , Comm. Appl. Nonlinear Anal., Volume 12 (2005), pp. 15-28

[10] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1} = (\alpha x_n + \beta x_{n-1} + \gamma x_{n-2} + \delta x_{n-3})/(Ax_n + Bx_{n-1} + Cx_{n-2} + Dx_{n-3})\), J. Appl. Math. Comput., Volume 22 (2006), pp. 247-262 | DOI

[11] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1} = \left( A + \Sigma_{i=0}^k \alpha_ix_{n-i} \right)/ \Sigma_{i=0}^k \beta_ix_{n-i}\), Math. Bohem., Volume 133 (2008), pp. 225-239

[12] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1} = \left( A + \Sigma_{i=0}^k \alpha_ix_{n-i} \right) /\left( \Sigma_{i=0}^k \beta_ix_{n-i}\right)\) , Int. J. Math. Math. Sci., Volume 2007 (2007), pp. 1-12

[13] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1} = ax_n - bx_n/ (cx_n - dx_{n-k})\), Comm. Appl. Nonlinear Anal., Volume 15 (2008), pp. 47-57

[14] Zayed, E. M. E.; El-Moneam, M. A. On the Rational Recursive Sequence \(x_{n+1} = (\alpha + \beta x_{n-k})/ (\gamma - x_n)\), J. Appl. Math. Comput., Volume 31 (2009), pp. 229-237 | DOI

[15] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1} = Ax_n +(\beta x_n + \gamma x_{n-k}) / (Cx_n + Dx_{n-k})\), Comm. Appl. Nonlinear Anal., Volume 16 (2009), pp. 91-106

[16] Zayed, E. M. E.; El-Moneam, M. A. On the Rational Recursive Sequence \(x_{n+1} = x_{n-k} + (ax_n + bx_{n-k}) / (cx_n - dx_{n-k})\), Bull. Iranian Math. Soc., Volume 36 (2010), pp. 103-115

[17] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1} = (\alpha_0x_n + \alpha_1x_{n-l} + \alpha_2x_{n-k}) / (\beta_0x_n + \beta_1x_{n-l} + \beta_2x_{n-k})\) , Math. Bohem., Volume 135 (2010), pp. 319-336

[18] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1} = Ax_n + Bx_{n-k} + (\beta x_n + \gamma x_{n-k}) / (Cx_n + Dx_{n-k})\), Acta Appl. Math., Volume 111 (2010), pp. 287-301

[19] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive two sequences \(x_{n+1} = ax_{n-k} + bx_{n-k}/ (cx_n + \delta dx_{n-k})\), Acta Math. Vietnam., Volume 35 (2010), pp. 355-369

[20] Zayed, E. M. E.; M. A. El-Moneam On the global attractivity of two nonlinear difference equations, J. Math. Sci. (N.Y.), Volume 177 (2011), pp. 487-499 | Zbl

[21] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1} = (A + \alpha_0x_n + \alpha_1x_{n-\sigma}) / (B + \beta_0x_n + \beta_1x_{n-\tau})\), Acta Math. Vietnam, Volume 36 (2011), pp. 73-87

[22] Zayed, E. M. E.; El-Moneam, M. A. On the global asymptotic stability for a rational recursive sequence, Iran. J. Sci. Technol. Trans. A Sci., Volume 35 (2011), pp. 333-339

[23] Zayed, E. M. E.; El-Moneam, M. A. On the global stability of the nonlinear difference equation \(x_{n+1} = \frac{\alpha_0x_n+\alpha_1x_{n-l}+\alpha_2x_{n-m}+\alpha_3x_{n-k}}{ \beta_0x_n+\beta_1x_{n-l}+\beta_2x_{n-m}+\beta_3x_{n-k}}\), WSEAS Transactions on Mathematics, Volume 11 (2012), pp. 357-366

[24] Zayed, E. M. E.; El-Moneam, M. A. On the qualitative study of the nonlinear difference equation \(x_{n+1} =\frac{ \alpha x_{n-\sigma}}{ \beta+\gamma x^p _{n-\tau}}\), Fasc. Math., Volume 50 (2013), pp. 137-147

Cité par Sources :