Voir la notice de l'article provenant de la source International Scientific Research Publications
$ y_{{n+1}}={\frac{\alpha _{{0}}y_{{n}}+\alpha _{{1}}y_{{n-p}}+\alpha _{{2}}y_{% {n-q}}+\alpha _{{3}}y_{{n-r}}+\alpha _{{4}}y_{{n-s}}+\alpha _{{5}}y_{{n-t}}}{% \beta _{{0}}y_{{n}}+\beta _{{1}}y_{{n-p}}+\beta _{{2}}y_{{n-q}}+\beta _{{3}% }y_{{n-r}}+\beta _{{4}}y_{{n-s}}+\beta _{{5}}y_{{n-t}}}}, $ |
El-Moneam, M. A. 1 ; Aly, E. S.  1 ; Aiyashi, M. A.  1
@article{JNSA_2019_12_2_a3, author = {El-Moneam, M. A. and Aly, E. S. and Aiyashi, M. A. }, title = {On the rational difference equation \(y_{{n+1}}={\frac{\alpha _{{0}}y_{{n}}+\alpha _{{1}}y_{{n-p}}+\alpha _{{2}}y_{{n-q}}+\alpha _{{3}}y_{{n-r}}+\alpha _{{4}}y_{{n-s}}+\alpha _{{5}}y_{{n-t}}}{\beta _{{0}}y_{{n}}+\beta _{{1}}y_{{n-p}}+\beta _{{2}}y_{{n-q}}+\beta _{{3}}y_{{n-r}}+\beta _{{4}}y_{{n-s}}+\beta _{{5}}y_{{n-t}}}}\)}, journal = {Journal of nonlinear sciences and its applications}, pages = {102-119}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2019}, doi = {10.22436/jnsa.012.02.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.04/} }
TY - JOUR AU - El-Moneam, M. A. AU - Aly, E. S. AU - Aiyashi, M. A. TI - On the rational difference equation \(y_{{n+1}}={\frac{\alpha _{{0}}y_{{n}}+\alpha _{{1}}y_{{n-p}}+\alpha _{{2}}y_{{n-q}}+\alpha _{{3}}y_{{n-r}}+\alpha _{{4}}y_{{n-s}}+\alpha _{{5}}y_{{n-t}}}{\beta _{{0}}y_{{n}}+\beta _{{1}}y_{{n-p}}+\beta _{{2}}y_{{n-q}}+\beta _{{3}}y_{{n-r}}+\beta _{{4}}y_{{n-s}}+\beta _{{5}}y_{{n-t}}}}\) JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 102 EP - 119 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.04/ DO - 10.22436/jnsa.012.02.04 LA - en ID - JNSA_2019_12_2_a3 ER -
%0 Journal Article %A El-Moneam, M. A. %A Aly, E. S. %A Aiyashi, M. A. %T On the rational difference equation \(y_{{n+1}}={\frac{\alpha _{{0}}y_{{n}}+\alpha _{{1}}y_{{n-p}}+\alpha _{{2}}y_{{n-q}}+\alpha _{{3}}y_{{n-r}}+\alpha _{{4}}y_{{n-s}}+\alpha _{{5}}y_{{n-t}}}{\beta _{{0}}y_{{n}}+\beta _{{1}}y_{{n-p}}+\beta _{{2}}y_{{n-q}}+\beta _{{3}}y_{{n-r}}+\beta _{{4}}y_{{n-s}}+\beta _{{5}}y_{{n-t}}}}\) %J Journal of nonlinear sciences and its applications %D 2019 %P 102-119 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.04/ %R 10.22436/jnsa.012.02.04 %G en %F JNSA_2019_12_2_a3
El-Moneam, M. A.; Aly, E. S. ; Aiyashi, M. A. . On the rational difference equation \(y_{{n+1}}={\frac{\alpha _{{0}}y_{{n}}+\alpha _{{1}}y_{{n-p}}+\alpha _{{2}}y_{{n-q}}+\alpha _{{3}}y_{{n-r}}+\alpha _{{4}}y_{{n-s}}+\alpha _{{5}}y_{{n-t}}}{\beta _{{0}}y_{{n}}+\beta _{{1}}y_{{n-p}}+\beta _{{2}}y_{{n-q}}+\beta _{{3}}y_{{n-r}}+\beta _{{4}}y_{{n-s}}+\beta _{{5}}y_{{n-t}}}}\). Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 2, p. 102-119. doi : 10.22436/jnsa.012.02.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.04/
[1] On the difference equation \(x_{n+1} = ax_n - bx_n/ (cx_n - dx_{n-1})\), Adv. Difference Equ., Volume 2006 (2006), pp. 1-10
[2] On the difference equation \(x_{n+1} = (\alpha x_{n-l} + \beta x_{n-k}) / (Ax_{n-l} + Bx_{n-k})\), Acta Math. Vietnam., Volume 33 (2008), pp. 85-94
[3] On study of the asymptotic behavior of some rational difference equations , Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., Volume 21 (2014), pp. 89-109
[4] On the global attractivity and periodic character of a recursive sequence, Opuscula Math., Volume 30 (2010), pp. 431-446 | Zbl
[5] Periodicities in nonlinear difference equations, Chapman & Hall/CRC, Boca Raton, 2005
[6] Dynamics of a rational difference equation, Appl. Math. Comput., Volume 163 (2005), pp. 577-591 | DOI
[7] Global attractivity and periodic character of difference equation of order four, Discrete Dyn. Nat. Soc., Volume 2012 (2012), pp. 1-20 | Zbl
[8] Dynamics of a higher order rational difference equation, Appl. Math. Comput., Volume 181 (2006), pp. 84-102 | DOI
[9] On the rational recursive sequence \(x_{n+1} = (D+ \alpha x_n + \beta x_{n-1} + \gamma x_{n-2})/(Ax_n + Bxn-1 + Cx_{n-2})\) , Comm. Appl. Nonlinear Anal., Volume 12 (2005), pp. 15-28
[10] On the rational recursive sequence \(x_{n+1} = (\alpha x_n + \beta x_{n-1} + \gamma x_{n-2} + \delta x_{n-3})/(Ax_n + Bx_{n-1} + Cx_{n-2} + Dx_{n-3})\), J. Appl. Math. Comput., Volume 22 (2006), pp. 247-262 | DOI
[11] On the rational recursive sequence \(x_{n+1} = \left( A + \Sigma_{i=0}^k \alpha_ix_{n-i} \right)/ \Sigma_{i=0}^k \beta_ix_{n-i}\), Math. Bohem., Volume 133 (2008), pp. 225-239
[12] On the rational recursive sequence \(x_{n+1} = \left( A + \Sigma_{i=0}^k \alpha_ix_{n-i} \right) /\left( \Sigma_{i=0}^k \beta_ix_{n-i}\right)\) , Int. J. Math. Math. Sci., Volume 2007 (2007), pp. 1-12
[13] On the rational recursive sequence \(x_{n+1} = ax_n - bx_n/ (cx_n - dx_{n-k})\), Comm. Appl. Nonlinear Anal., Volume 15 (2008), pp. 47-57
[14] On the Rational Recursive Sequence \(x_{n+1} = (\alpha + \beta x_{n-k})/ (\gamma - x_n)\), J. Appl. Math. Comput., Volume 31 (2009), pp. 229-237 | DOI
[15] On the rational recursive sequence \(x_{n+1} = Ax_n +(\beta x_n + \gamma x_{n-k}) / (Cx_n + Dx_{n-k})\), Comm. Appl. Nonlinear Anal., Volume 16 (2009), pp. 91-106
[16] On the Rational Recursive Sequence \(x_{n+1} = x_{n-k} + (ax_n + bx_{n-k}) / (cx_n - dx_{n-k})\), Bull. Iranian Math. Soc., Volume 36 (2010), pp. 103-115
[17] On the rational recursive sequence \(x_{n+1} = (\alpha_0x_n + \alpha_1x_{n-l} + \alpha_2x_{n-k}) / (\beta_0x_n + \beta_1x_{n-l} + \beta_2x_{n-k})\) , Math. Bohem., Volume 135 (2010), pp. 319-336
[18] On the rational recursive sequence \(x_{n+1} = Ax_n + Bx_{n-k} + (\beta x_n + \gamma x_{n-k}) / (Cx_n + Dx_{n-k})\), Acta Appl. Math., Volume 111 (2010), pp. 287-301
[19] On the rational recursive two sequences \(x_{n+1} = ax_{n-k} + bx_{n-k}/ (cx_n + \delta dx_{n-k})\), Acta Math. Vietnam., Volume 35 (2010), pp. 355-369
[20] On the global attractivity of two nonlinear difference equations, J. Math. Sci. (N.Y.), Volume 177 (2011), pp. 487-499 | Zbl
[21] On the rational recursive sequence \(x_{n+1} = (A + \alpha_0x_n + \alpha_1x_{n-\sigma}) / (B + \beta_0x_n + \beta_1x_{n-\tau})\), Acta Math. Vietnam, Volume 36 (2011), pp. 73-87
[22] On the global asymptotic stability for a rational recursive sequence, Iran. J. Sci. Technol. Trans. A Sci., Volume 35 (2011), pp. 333-339
[23] On the global stability of the nonlinear difference equation \(x_{n+1} = \frac{\alpha_0x_n+\alpha_1x_{n-l}+\alpha_2x_{n-m}+\alpha_3x_{n-k}}{ \beta_0x_n+\beta_1x_{n-l}+\beta_2x_{n-m}+\beta_3x_{n-k}}\), WSEAS Transactions on Mathematics, Volume 11 (2012), pp. 357-366
[24] On the qualitative study of the nonlinear difference equation \(x_{n+1} =\frac{ \alpha x_{n-\sigma}}{ \beta+\gamma x^p _{n-\tau}}\), Fasc. Math., Volume 50 (2013), pp. 137-147
Cité par Sources :