Viscosity iterative method for split common null point problems and fixed point problems
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 2, p. 86-101.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce and study an Ishikawa-like iterative algorithm to approximate a common solution of a split common null point problem and a fixed point problem of asymptotically pseudo-contractive mappings in the intermediate sense on unbounded domains. We prove that the sequence generated by the iterative scheme strongly converges to a common solution of the above-said problems. The method in this paper is novel and different from those given in many other papers. The results are the extension and improvement of the recent results in the literature.
DOI : 10.22436/jnsa.012.02.03
Classification : 47H09, 47H10, 49H17
Keywords: Banach space, split common null point problem, fixed point, metric resolvent, asymptotically pseudocontractive mapping in the intermediate sense

Song, Yanlai  1 ; Chen, Xinhong  1

1 College of Science, Zhongyuan University of Technology, 450007 Zhengzhou, China
@article{JNSA_2019_12_2_a2,
     author = {Song, Yanlai  and Chen, Xinhong },
     title = {Viscosity iterative method  for split common null point problems and fixed point problems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {86-101},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2019},
     doi = {10.22436/jnsa.012.02.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.03/}
}
TY  - JOUR
AU  - Song, Yanlai 
AU  - Chen, Xinhong 
TI  - Viscosity iterative method  for split common null point problems and fixed point problems
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 86
EP  - 101
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.03/
DO  - 10.22436/jnsa.012.02.03
LA  - en
ID  - JNSA_2019_12_2_a2
ER  - 
%0 Journal Article
%A Song, Yanlai 
%A Chen, Xinhong 
%T Viscosity iterative method  for split common null point problems and fixed point problems
%J Journal of nonlinear sciences and its applications
%D 2019
%P 86-101
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.03/
%R 10.22436/jnsa.012.02.03
%G en
%F JNSA_2019_12_2_a2
Song, Yanlai ; Chen, Xinhong . Viscosity iterative method  for split common null point problems and fixed point problems. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 2, p. 86-101. doi : 10.22436/jnsa.012.02.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.03/

[1] Alber, Y. I. Metric and generalized projections operators in Banach spaces: properties and applications, Dekker, New York, 1996

[2] Aoyama, K.; Kohsaka, F.; Takahashi, W. Three generalizations of firmly nonexpansive mappings: their relations and continuous properties , J. Nonlinear Convex Anal., Volume 10 (2009), pp. 131-147

[3] V. Barbu Nonlinear Semigroups and Differential Equations in Banach spaces, Noordhoff International Publishing, Leiden, 1976

[4] F. E. Browder Nonlinear maximal monotone operators in Banach spaces, Math. Ann., Volume 175 (1968), pp. 89-113 | DOI

[5] Cho, S. Y. Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space, J. Appl. Anal. Comput., Volume 8 (2018), pp. 19-31

[6] Deepho, J.; Thounthong, P.; Kumam, P.; Phiangsungnoen, S. A new general iterative scheme for split variational inclusion and fixed point problems of k-strict pseudo-contraction mappings with convergence analysis, J. Comput. Appl. Math., Volume 318 (2017), pp. 293-306 | DOI | Zbl

[7] Ge, C.-S. A hybrid algorithm with variable coefficients for asymptotically pseudocontractive mappings in the intermediate sense on unbounded domains, Nonlinear Anal., Volume 75 (2012), pp. 2859-2866 | Zbl | DOI

[8] Goebel, K.; Kirk, W. A. A fixed point theorem for asymptotically nonexpansive mappings , Proc. Amer. Math. Soc., Volume 35 (1972), pp. 171-174 | DOI

[9] Kim, T.-H.; H.-K. Xu Convergence of the modified Mann’s iteration method for asymptotically strict pseudo-contractions, Nonlinear Anal., Volume 68 (2008), pp. 2828-2836 | Zbl | DOI

[10] Liu, Q. H. Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings, Nonlinear Anal., Volume 26 (1996), pp. 1835-1842 | Zbl | DOI

[11] L. S. Liu Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., Volume 194 (1995), pp. 114-125 | DOI

[12] P.-E. Mainge Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 325 (2007), pp. 469-479 | DOI

[13] A. Moudafi Krasnoselski-Mann iteration for hierarchical fixed-point problems, Inverse Problems, Volume 23 (2007), pp. 1635-1640 | DOI

[14] Olaleru, J. O.; Okeke, G. A. Strong convergence theorems for asymptotically pseudocontractive mappings in the intermediate sense, British J. Math. Computer Sci., Volume 2 (2012), pp. 151-162

[15] Qin, X.; S. Y. Cho Convergence analysis of a monotone projection algorithm in reflexive Banach spaces, Acta Math. Sci. Ser. B (Engl. Ed.), Volume 37 (2017), pp. 488-502 | DOI | Zbl

[16] Qin, X.; Cho, S. Y.; J. K. Kim Convergence theorems on asymptotically pseudocontractive mappings in the intermediate sense, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-14 | DOI

[17] Qin, X.; Yao, J.-C. Projection splitting algorithms for nonself operators, J. Nonlinear Convex Anal., Volume 18 (2017), pp. 925-935 | Zbl

[18] Sahu, D. R.; Xu, H.-K.; Yao, J.-C. Asymptotically strict pseudocontractive mappings in the intermediate sense, Nonlinear Anal., Volume 70 (2009), pp. 3502-3511 | DOI

[19] Schu, J. Iterative construction of fixed points of asymptotically nonexpansive mapping , J. Math. Anal. Appl., Volume 158 (1991), pp. 407-413 | DOI

[20] W. Takahashi Convex Analysis and Approximation of Fixed Points, Yokohama Publ., Yokohama, 2000 | DOI

[21] Takahashi, W. Nonlinear Functional Analysis, Yokohama Publ., Yokohama, 2000

[22] Takahashi, W.; Yao, J.-C. Strong convergence theorems by hybrid methods for the split common null point problem in Banach spaces , Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-13 | DOI | Zbl

[23] Tan, K.-K.; H.-K. Xu Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., Volume 178 (1993), pp. 301-308 | DOI

[24] Tianchai, P. An approximate solution to the fixed point problems for an infinite family of asymptotically strictly pseudocontractive mappings in the intermediate sense, cocoercive quasivariational inclusions problems and mixed equilibrium problems in Hilbert spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-26 | Zbl | DOI

[25] Yamada, I.; N. Ogura Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings , Numer. Funct. Anal. Optim., Volume 25 (2004), pp. 619-655 | Zbl | DOI

[26] Zegeye, H.; Robdera, M.; Choudhary, B. Convergence theorems for asymptotically pseudocontractive mappings in the intermediate sense, Comput. Math. Appl., Volume 62 (2011), pp. 326-332 | DOI

[27] Zhou, H. Demiclosedness principle with applications for asymptotically pseudo-contraction in Hilbert spaces, Nonlinear Anal., Volume 70 (2009), pp. 3140-3145 | Zbl | DOI

Cité par Sources :