Voir la notice de l'article provenant de la source International Scientific Research Publications
Zhong, Shiping  1
@article{JNSA_2019_12_2_a1, author = {Zhong, Shiping }, title = {A motion of complex curves in \(\mathbb {C^3\)} and the nonlocal nonlinear {Schr\"odinger} equation}, journal = {Journal of nonlinear sciences and its applications}, pages = {75-85}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2019}, doi = {10.22436/jnsa.012.02.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.02/} }
TY - JOUR AU - Zhong, Shiping TI - A motion of complex curves in \(\mathbb C^3\) and the nonlocal nonlinear Schrödinger equation JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 75 EP - 85 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.02/ DO - 10.22436/jnsa.012.02.02 LA - en ID - JNSA_2019_12_2_a1 ER -
%0 Journal Article %A Zhong, Shiping %T A motion of complex curves in \(\mathbb C^3\) and the nonlocal nonlinear Schrödinger equation %J Journal of nonlinear sciences and its applications %D 2019 %P 75-85 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.02/ %R 10.22436/jnsa.012.02.02 %G en %F JNSA_2019_12_2_a1
Zhong, Shiping . A motion of complex curves in \(\mathbb C^3\) and the nonlocal nonlinear Schrödinger equation. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 2, p. 75-85. doi : 10.22436/jnsa.012.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.02/
[1] Method for solving the Sine-Gordon equation, Phys. Rev. Lett., Volume 30 (1973), pp. 1262-1264 | DOI
[2] Integrable nonlocal nonlinear Schrödinger equation , Phys. Rev. Lett., Volume 110 (2013), pp. 1-5 | DOI
[3] Solitons and the inverse scattering transform, SIAM , Philadelphia, 1981
[4] Schrödinger maps, Comm. Pure Appl. Math., Volume 53 (2000), pp. 590-602 | DOI
[5] On the motion of an unbounded fluid with a vortex filament of any shape, Rend. Circ. Mat. Palermo., Volume 22 (1906), pp. 117-135
[6] A note on the NLS and the Schrödinger flow of maps, Phys. Lett. A, Volume 248 (1998), pp. 49-56 | DOI | Zbl
[7] Schrödinger flows, binormal motion of curves and the second AKNS hierarchies, Chaos Solitons Fractals, Volume 21 (2004), pp. 669-677 | DOI | Zbl
[8] Schrödinger flows of maps into symplectic manifolds, Sci. China A, Volume 41 (1998), pp. 746-755 | DOI
[9] A motion of spacelike curves in the Minkowski 3-space and the KdV equation, Phys. Lett. A, Volume 374 (2010), pp. 3201-3205 | DOI | Zbl
[10] The complex 2-sphere in \(\mathbb{C}^3\) and Schrödinger flows, Sci. China Math. (accepted) | DOI
[11] An elementary geometric characterization of the integrable motions of a curve, Phys. Lett. A, Volume 185 (1994), pp. 373-384 | Zbl | DOI
[12] Three-dimensional distortions of a vortex filament with axial velocity , J. Fluid. Mech., Volume 22 (1991), pp. 369-416 | Zbl | DOI
[13] Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation, Phys. Rev. A, Volume 93 (2016), pp. 1-062124 | DOI
[14] Deformations of minimal curves in \(\mathbb{C}^3\), in Proc: 1-st NOSONGE Conference, Warsaw (1996), pp. 269-286
[15] Duals of vector fields and of null curves, Result. Math., Volume 50 (2007), pp. 53-79 | DOI | Zbl
[16] Modern differential geometry of curves and surfaces, CRC Press, Boca Raton, 1995
[17] Motion of curves on two-dimensional surfaces and soliton equations, Phys. Lett. A, Volume 241 (1998), pp. 329-334 | Zbl | DOI
[18] Nonlocal nonlinear Schrödinger equations and their soliton solutions, J. Math. Phys., Volume 59 (2018), pp. 1-17 | DOI
[19] A soliton on a vortex filament, J. Fluid. Mech., Volume 21 (1972), pp. 477-485 | DOI
[20] Motion of strings, embedding problem and soliton equations, Appl. Sci. Res., Volume 37 (1981), pp. 127-143 | DOI | Zbl
[21] Solitons on moving space curves, J. Mathematical Phys., Volume 18 (1977), pp. 1654-1661 | DOI
[22] On the gauge equivalence of the Landau-Lifshitz and the nonlinear Schrödinger equations on symmetric spaces, Phys. Lett. A, Volume 95 (1983), pp. 95-100 | DOI
[23] New geometries associated with the nonlinear Schrödinger equation, Eur. Phys. J. B Condens. Matter Phys., Volume 29 (2002), pp. 193-196
[24] Theory of solitons: the inverse scattering method, Plenum, New York, 1984
[25] On holomorphic Riemannian geometry and submanifolds of Wick-related spaces, J. Geom. Phys., Volume 104 (2016), pp. 163-174 | Zbl | DOI
[26] Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities, Phys. Rev. E, Volume 89 (2014), pp. 1-7 | DOI
[27] Schrödinger flows on Grassmannians, AMS/IP Stud. Adv. Math., Volume 36 (2006), pp. 235-256 | Zbl
[28] Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet, Theor. Math. Phys., Volume 38 (1979), pp. 17-23 | DOI
Cité par Sources :