A motion of complex curves in $\mathbb C^3$ and the nonlocal nonlinear Schrödinger equation
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 2, p. 75-85.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper shows that soliton solutions to the nonlocal nonlinear Schrödinger equation (NNLS) proposed recently by Ablowitz and Musslimani [M. J. Ablowitz, Z. H. Musslimani, Phys. Rev. Lett., $\bf 110$ (2013), 5 pages] describe a motion of three distinct complex curves in $\mathbb C^3$ with initial data being suitably restricted. This gives a geometric interpretation of NNLS.
DOI : 10.22436/jnsa.012.02.02
Classification : 53A04, 35Q55, 35Q60
Keywords: Complex moving curve, geometric interpretation, uniqueness

Zhong, Shiping  1

1 School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou 341000, P. R. China
@article{JNSA_2019_12_2_a1,
     author = {Zhong, Shiping },
     title = {A motion of complex curves in  \(\mathbb {C^3\)} and the nonlocal nonlinear {Schr\"odinger}  equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {75-85},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2019},
     doi = {10.22436/jnsa.012.02.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.02/}
}
TY  - JOUR
AU  - Zhong, Shiping 
TI  - A motion of complex curves in  \(\mathbb C^3\) and the nonlocal nonlinear Schrödinger  equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 75
EP  - 85
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.02/
DO  - 10.22436/jnsa.012.02.02
LA  - en
ID  - JNSA_2019_12_2_a1
ER  - 
%0 Journal Article
%A Zhong, Shiping 
%T A motion of complex curves in  \(\mathbb C^3\) and the nonlocal nonlinear Schrödinger  equation
%J Journal of nonlinear sciences and its applications
%D 2019
%P 75-85
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.02/
%R 10.22436/jnsa.012.02.02
%G en
%F JNSA_2019_12_2_a1
Zhong, Shiping . A motion of complex curves in  \(\mathbb C^3\) and the nonlocal nonlinear Schrödinger  equation. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 2, p. 75-85. doi : 10.22436/jnsa.012.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.02/

[1] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H. Method for solving the Sine-Gordon equation, Phys. Rev. Lett., Volume 30 (1973), pp. 1262-1264 | DOI

[2] Ablowitz, M. J.; Musslimani, Z. H. Integrable nonlocal nonlinear Schrödinger equation , Phys. Rev. Lett., Volume 110 (2013), pp. 1-5 | DOI

[3] Ablowitz, M. J.; H. Segur Solitons and the inverse scattering transform, SIAM , Philadelphia, 1981

[4] Chang, N.-H.; Shatah, J.; Unlenbeck, K. Schrödinger maps, Comm. Pure Appl. Math., Volume 53 (2000), pp. 590-602 | DOI

[5] Rios, L. S. Da On the motion of an unbounded fluid with a vortex filament of any shape, Rend. Circ. Mat. Palermo., Volume 22 (1906), pp. 117-135

[6] Q. Ding A note on the NLS and the Schrödinger flow of maps, Phys. Lett. A, Volume 248 (1998), pp. 49-56 | DOI | Zbl

[7] Ding, Q.; Inoguchi, J. Schrödinger flows, binormal motion of curves and the second AKNS hierarchies, Chaos Solitons Fractals, Volume 21 (2004), pp. 669-677 | DOI | Zbl

[8] Ding, W. Y.; Y. D. Wang Schrödinger flows of maps into symplectic manifolds, Sci. China A, Volume 41 (1998), pp. 746-755 | DOI

[9] Ding, Q.; Wang, W.; Wang, Y. D. A motion of spacelike curves in the Minkowski 3-space and the KdV equation, Phys. Lett. A, Volume 374 (2010), pp. 3201-3205 | DOI | Zbl

[10] Ding, Q.; Zhong, S. P. The complex 2-sphere in \(\mathbb{C}^3\) and Schrödinger flows, Sci. China Math. (accepted) | DOI

[11] Doliwa, A.; P. M. Santini An elementary geometric characterization of the integrable motions of a curve, Phys. Lett. A, Volume 185 (1994), pp. 373-384 | Zbl | DOI

[12] Fukumoto, Y.; Miyazaki, T. Three-dimensional distortions of a vortex filament with axial velocity , J. Fluid. Mech., Volume 22 (1991), pp. 369-416 | Zbl | DOI

[13] Gadzhimuradov, T. A.; Agalarov, A. M. Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation, Phys. Rev. A, Volume 93 (2016), pp. 1-062124 | DOI

[14] H. Gollek Deformations of minimal curves in \(\mathbb{C}^3\), in Proc: 1-st NOSONGE Conference, Warsaw (1996), pp. 269-286

[15] Gollek, H. Duals of vector fields and of null curves, Result. Math., Volume 50 (2007), pp. 53-79 | DOI | Zbl

[16] Gray, A. Modern differential geometry of curves and surfaces, CRC Press, Boca Raton, 1995

[17] M. Gürses Motion of curves on two-dimensional surfaces and soliton equations, Phys. Lett. A, Volume 241 (1998), pp. 329-334 | Zbl | DOI

[18] Gürses, M.; Pekcan, A. Nonlocal nonlinear Schrödinger equations and their soliton solutions, J. Math. Phys., Volume 59 (2018), pp. 1-17 | DOI

[19] H. Hasimoto A soliton on a vortex filament, J. Fluid. Mech., Volume 21 (1972), pp. 477-485 | DOI

[20] Lakshmanan, K. M.; Tamizhmani, K. M. Motion of strings, embedding problem and soliton equations, Appl. Sci. Res., Volume 37 (1981), pp. 127-143 | DOI | Zbl

[21] Lamb, G. L. Solitons on moving space curves, J. Mathematical Phys., Volume 18 (1977), pp. 1654-1661 | DOI

[22] Makhankov, V. G.; Pashaev, O. K. On the gauge equivalence of the Landau-Lifshitz and the nonlinear Schrödinger equations on symmetric spaces, Phys. Lett. A, Volume 95 (1983), pp. 95-100 | DOI

[23] Murugesh, S.; Balakrishnana, R. New geometries associated with the nonlinear Schrödinger equation, Eur. Phys. J. B Condens. Matter Phys., Volume 29 (2002), pp. 193-196

[24] Novikov, S. P.; Manakov, S. V.; Pitaevskii, L. P.; V. E. Zakharov Theory of solitons: the inverse scattering method, Plenum, New York, 1984

[25] Pessers, V.; Veken, J. Van der On holomorphic Riemannian geometry and submanifolds of Wick-related spaces, J. Geom. Phys., Volume 104 (2016), pp. 163-174 | Zbl | DOI

[26] Sarma, A. K.; Miri, M.-A.; Musslimani, Z. H.; Christodoulides, D. N. Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities, Phys. Rev. E, Volume 89 (2014), pp. 1-7 | DOI

[27] Terng, C.-L.; Uhlenbeck, K. Schrödinger flows on Grassmannians, AMS/IP Stud. Adv. Math., Volume 36 (2006), pp. 235-256 | Zbl

[28] Zakharov, V. E.; Takhtajan, L. A. Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet, Theor. Math. Phys., Volume 38 (1979), pp. 17-23 | DOI

Cité par Sources :