Voir la notice de l'article provenant de la source International Scientific Research Publications
$ x_{n+1}=x_{n-p}\ \left( \frac{2\ x_{n-q}\ +a\ x_{n-r}}{x_{n-q}\ +a\ x_{n-r}}% \right), $ |
El-Moneam, M. A.  1 ; Ibrahim, Tarek F.  2 ; Elamody, S.  1
@article{JNSA_2019_12_2_a0, author = {El-Moneam, M. A. and Ibrahim, Tarek F. and Elamody, S. }, title = {Stability of a fractional difference equation of high order}, journal = {Journal of nonlinear sciences and its applications}, pages = {65-74}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2019}, doi = {10.22436/jnsa.012.02.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.01/} }
TY - JOUR AU - El-Moneam, M. A. AU - Ibrahim, Tarek F. AU - Elamody, S. TI - Stability of a fractional difference equation of high order JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 65 EP - 74 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.01/ DO - 10.22436/jnsa.012.02.01 LA - en ID - JNSA_2019_12_2_a0 ER -
%0 Journal Article %A El-Moneam, M. A. %A Ibrahim, Tarek F. %A Elamody, S. %T Stability of a fractional difference equation of high order %J Journal of nonlinear sciences and its applications %D 2019 %P 65-74 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.01/ %R 10.22436/jnsa.012.02.01 %G en %F JNSA_2019_12_2_a0
El-Moneam, M. A. ; Ibrahim, Tarek F. ; Elamody, S. . Stability of a fractional difference equation of high order. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 2, p. 65-74. doi : 10.22436/jnsa.012.02.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.01/
[1] On the solution of fourth-order rational recursive sequence , Adv. Stud. Contemp. Math. (Kyungshang), Volume 20 (2010), pp. 525-545 | Zbl
[2] Global Behavior of \(y_{n+1} = \frac{p+y_{n-k}}{ qy_n+y_{n-k}}\), Nonlinear Anal., Volume 47 (2001), pp. 4743-4751 | DOI
[3] On the difference equation \(x_{n+1} = ax_n - \frac{ bx_n}{ cx_{n }- dx_{n-1}}\), Adv. Difference Equ., Volume 2006 (2006), pp. 1-10 | DOI
[4] On the global attractivity and the periodic character of some difference equations, J. Differ. Equations Appl., Volume 7 (2001), pp. 837-850 | DOI
[5] On the dynamics of the higher order nonlinear rational difference equation, Math. Sci. Lett., Volume 3 (2014), pp. 121-129
[6] On the dynamics of the solutions of the rational recursive sequences, British J. Math. Computer Sci., Volume 5 (2015), pp. 654-665
[7] On study of the asymptotic behavior of some rational difference equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., Volume 21 (2014), pp. 89-109
[8] Dynamics of the rational difference equation, Inf. Sci. Lett., Volume 3 (2014), pp. 1-9
[9] Solution and Attractivity for a Rational Recursive Sequence, Discrete Dyn. Nat. Soc., Volume 2011 (2011), pp. 1-17 | Zbl
[10] Solutions and Periodicity of a Rational Recursive Sequences of Order Five, Bull. Malays. Math. Sci. Soc., Volume 38 (2015), pp. 95-112 | Zbl | DOI
[11] Periodicities in Nonlinear Difference Equations, Chapman & Hall/CRC , Boca Raton, 2005
[12] Boundedness and stability of a rational difference equation with delay, Rev. Roum. Math. Pures Appl., Volume 57 (2012), pp. 215-224 | Zbl
[13] Periodicity and global attractivity of difference equation of higher order, J. Comput. Anal. Appl., Volume 16 (2014), pp. 552-564 | Zbl
[14] Three-dimensional max-type cyclic system of difference equations , Int. J. Phys. Sci., Volume 8 (2013), pp. 629-634 | DOI
[15] On a third-order rational difference equation with variable coefficients , Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, Volume 20 (2013), pp. 251-264 | Zbl
[16] Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993 | DOI
[17] On the rational recursive two sequences \(x_{n+1} = ax_{n-k} +bx_{n-k}/ (cx_n + \delta dx_{n-k})\), Acta Math. Vietnam., Volume 35 (2010), pp. 355-369
[18] On the global attractivity of two nonlinear difference equations, J. Math. Sci., Volume 177 (2011), pp. 487-499 | Zbl | DOI
Cité par Sources :