Stability of a fractional difference equation of high order
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 2, p. 65-74.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we investigate the local stability, global stability, and boundedness of solutions of the recursive sequence%
$ x_{n+1}=x_{n-p}\ \left( \frac{2\ x_{n-q}\ +a\ x_{n-r}}{x_{n-q}\ +a\ x_{n-r}}% \right), $
where $x_{-q+k}\ \neq -a\ x_{-r+k} $ for $ k=0,1,\dots,\min (q,r) , a\in \mathbb{R},\ p ,q, r \geq 0$ with the initial condition $x_{-p},x_{-p+1} ,\dots, x_{-q},$ $x_{-q+1} ,\dots, x_{-r},x_{-r+1} ,\dots, x_{-1}$ and $x_{0}\in (0,\infty )$. Some numerical examples will be given to illustrate our results.
DOI : 10.22436/jnsa.012.02.01
Classification : 39A10, 39A11, 39A99, 34C99
Keywords: Difference equations, prime period two solution, boundedness character, locally asymptotically stable, global attractor, global stability, high orders

El-Moneam, M. A.  1 ; Ibrahim, Tarek F.  2 ; Elamody, S.  1

1 Mathematics Department, Faculty of Science, Jazan University, Saudi Arabia
2 Mathematics Department, College of Sciences and Arts for Girls in sarat Abida, King Khalid University, Saudi Arabia;Mathematics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
@article{JNSA_2019_12_2_a0,
     author = {El-Moneam, M. A.  and Ibrahim, Tarek F.  and Elamody, S. },
     title = {Stability of a fractional difference equation of high order},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {65-74},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2019},
     doi = {10.22436/jnsa.012.02.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.01/}
}
TY  - JOUR
AU  - El-Moneam, M. A. 
AU  - Ibrahim, Tarek F. 
AU  - Elamody, S. 
TI  - Stability of a fractional difference equation of high order
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 65
EP  - 74
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.01/
DO  - 10.22436/jnsa.012.02.01
LA  - en
ID  - JNSA_2019_12_2_a0
ER  - 
%0 Journal Article
%A El-Moneam, M. A. 
%A Ibrahim, Tarek F. 
%A Elamody, S. 
%T Stability of a fractional difference equation of high order
%J Journal of nonlinear sciences and its applications
%D 2019
%P 65-74
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.01/
%R 10.22436/jnsa.012.02.01
%G en
%F JNSA_2019_12_2_a0
El-Moneam, M. A. ; Ibrahim, Tarek F. ; Elamody, S. . Stability of a fractional difference equation of high order. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 2, p. 65-74. doi : 10.22436/jnsa.012.02.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.02.01/

[1] Agarwal, R. P.; Elsayed, E. M. On the solution of fourth-order rational recursive sequence , Adv. Stud. Contemp. Math. (Kyungshang), Volume 20 (2010), pp. 525-545 | Zbl

[2] Devault, R.; Kosmala, W.; Ladas, G.; Schaultz, S. W. Global Behavior of \(y_{n+1} = \frac{p+y_{n-k}}{ qy_n+y_{n-k}}\), Nonlinear Anal., Volume 47 (2001), pp. 4743-4751 | DOI

[3] Elabbasy, E. M.; El-Metwally, H.; E. M. Elsayed On the difference equation \(x_{n+1} = ax_n - \frac{ bx_n}{ cx_{n }- dx_{n-1}}\), Adv. Difference Equ., Volume 2006 (2006), pp. 1-10 | DOI

[4] El-Metwally, H.; Grove, E. A.; Ladas, G.; Voulov, H. D. On the global attractivity and the periodic character of some difference equations, J. Differ. Equations Appl., Volume 7 (2001), pp. 837-850 | DOI

[5] M. A. El-Moneam On the dynamics of the higher order nonlinear rational difference equation, Math. Sci. Lett., Volume 3 (2014), pp. 121-129

[6] El-Moneam, M. A. On the dynamics of the solutions of the rational recursive sequences, British J. Math. Computer Sci., Volume 5 (2015), pp. 654-665

[7] El-Moneam, M. A.; Alamoudy, S. O. On study of the asymptotic behavior of some rational difference equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., Volume 21 (2014), pp. 89-109

[8] El-Moneam, M. A.; Zayed, E. M. E. Dynamics of the rational difference equation, Inf. Sci. Lett., Volume 3 (2014), pp. 1-9

[9] Elsayed, E. M. Solution and Attractivity for a Rational Recursive Sequence, Discrete Dyn. Nat. Soc., Volume 2011 (2011), pp. 1-17 | Zbl

[10] Elsayed, E. M.; Ibrahim, T. F. Solutions and Periodicity of a Rational Recursive Sequences of Order Five, Bull. Malays. Math. Sci. Soc., Volume 38 (2015), pp. 95-112 | Zbl | DOI

[11] Grove, E. A.; Ladas, G. Periodicities in Nonlinear Difference Equations, Chapman & Hall/CRC , Boca Raton, 2005

[12] T. F. Ibrahim Boundedness and stability of a rational difference equation with delay, Rev. Roum. Math. Pures Appl., Volume 57 (2012), pp. 215-224 | Zbl

[13] Ibrahim, T. F. Periodicity and global attractivity of difference equation of higher order, J. Comput. Anal. Appl., Volume 16 (2014), pp. 552-564 | Zbl

[14] Ibrahim, T. F. Three-dimensional max-type cyclic system of difference equations , Int. J. Phys. Sci., Volume 8 (2013), pp. 629-634 | DOI

[15] Ibrahim, T. F.; Touafek, N. On a third-order rational difference equation with variable coefficients , Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, Volume 20 (2013), pp. 251-264 | Zbl

[16] Kocic, V. L.; G. Ladas Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993 | DOI

[17] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive two sequences \(x_{n+1} = ax_{n-k} +bx_{n-k}/ (cx_n + \delta dx_{n-k})\), Acta Math. Vietnam., Volume 35 (2010), pp. 355-369

[18] Zayed, E. M. E.; El-Moneam, M. A. On the global attractivity of two nonlinear difference equations, J. Math. Sci., Volume 177 (2011), pp. 487-499 | Zbl | DOI

Cité par Sources :