Voir la notice de l'article provenant de la source International Scientific Research Publications
An, C. K.  1 ; Lee, H. Y.  1 ; Kim, Y. R.  1
@article{JNSA_2019_12_1_a5, author = {An, C. K. and Lee, H. Y. and Kim, Y. R. }, title = {A note on the second kind {\(q\)-Apostol} {Bernoulli} numbers, polynomials, and {Zeta} function}, journal = {Journal of nonlinear sciences and its applications}, pages = {56-64}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2019}, doi = {10.22436/jnsa.012.01.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.06/} }
TY - JOUR AU - An, C. K. AU - Lee, H. Y. AU - Kim, Y. R. TI - A note on the second kind \(q\)-Apostol Bernoulli numbers, polynomials, and Zeta function JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 56 EP - 64 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.06/ DO - 10.22436/jnsa.012.01.06 LA - en ID - JNSA_2019_12_1_a5 ER -
%0 Journal Article %A An, C. K. %A Lee, H. Y. %A Kim, Y. R. %T A note on the second kind \(q\)-Apostol Bernoulli numbers, polynomials, and Zeta function %J Journal of nonlinear sciences and its applications %D 2019 %P 56-64 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.06/ %R 10.22436/jnsa.012.01.06 %G en %F JNSA_2019_12_1_a5
An, C. K. ; Lee, H. Y. ; Kim, Y. R. . A note on the second kind \(q\)-Apostol Bernoulli numbers, polynomials, and Zeta function. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 1, p. 56-64. doi : 10.22436/jnsa.012.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.06/
[1] On the Lerch zeta function , Pacific J. Math., Volume 1 (1951), pp. 161-167 | Zbl
[2] Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n, and the multiple Hurwitz zeta function, Appl. Math. Comput., Volume 199 (2008), pp. 723-737 | DOI | Zbl
[3] Advanced combinatorics: the art of finite and infinite expansions, D. Reidel Publishing Co., Dordrecht/ Boston, 1974
[4] Note on the Euler q-zeta functions, J. Number Theory, Volume 129 (2009), pp. 1798-1804 | DOI
[5] A note on q-Euler and Genocchi numbers, Proc. Japan Acad. Ser. A Math. Sci., Volume 77 (2001), pp. 139-141 | DOI | Zbl
[6] A numerical investigation of the roots of the second kind \(\lambda\)-Bernoulli polynomials, Neural Parallel Sci. Comput., Volume 19 (2011), pp. 295-306 | Zbl
[7] Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-verlag, New York, 1966
[8] Analytic continuation of Euler polynomials and Euler zeta function, Discrete Dyn. Nat. Soc., Volume 2014 (2014), pp. 1-6
[9] Distribution of the roots of the second kind Bernoulli polynomials, J. Comput. Anal. Appl., Volume 13 (2011), pp. 971-976
[10] Handbook of number theory II, Kluwer Academic Publishers, Dordrecht, 2004 | DOI
[11] On q-analogue of the twisted L-functions and q-twisted Bernoulli numbers, J. Korean Math. Soc., Volume 40 (2003), pp. 963-975 | DOI
[12] Series associated with the zeta and related functions, Kluwer Academic Publishers, Dordrecht, 2001
Cité par Sources :