Voir la notice de l'article provenant de la source International Scientific Research Publications
Al-Lehaibi, Eman A. N. 1
@article{JNSA_2019_12_1_a2, author = { Al-Lehaibi, Eman A. N.}, title = {Mathematical model of generalized thermoelastic infinite medium with a spherical cavity and fractional order strain}, journal = {Journal of nonlinear sciences and its applications}, pages = {30-37}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2019}, doi = {10.22436/jnsa.012.01.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.03/} }
TY - JOUR AU - Al-Lehaibi, Eman A. N. TI - Mathematical model of generalized thermoelastic infinite medium with a spherical cavity and fractional order strain JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 30 EP - 37 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.03/ DO - 10.22436/jnsa.012.01.03 LA - en ID - JNSA_2019_12_1_a2 ER -
%0 Journal Article %A Al-Lehaibi, Eman A. N. %T Mathematical model of generalized thermoelastic infinite medium with a spherical cavity and fractional order strain %J Journal of nonlinear sciences and its applications %D 2019 %P 30-37 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.03/ %R 10.22436/jnsa.012.01.03 %G en %F JNSA_2019_12_1_a2
Al-Lehaibi, Eman A. N. Mathematical model of generalized thermoelastic infinite medium with a spherical cavity and fractional order strain. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 1, p. 30-37. doi : 10.22436/jnsa.012.01.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.03/
[1] Dynamic response of a rod due to a moving heat source under the hyperbolic heat conduction model , J. Sound Vib., Volume 242 (2001), pp. 629-640 | DOI
[2] Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., Volume 27 (1956), pp. 240-253 | DOI
[3] Longitudinal wave propagation in a generalized thermoelastic cylinder, J. Therm. Stresses, Volume 9 (1986), pp. 279-295 | DOI
[4] Generalized thermoelasticity for an infinite body with a circular cylindrical hole, JSME Int. J. I-Solid M., Volume 33 (1990), pp. 26-32 | DOI
[5] On the entropy production inequality, Arch. Rational Mech. Anal., Volume 45 (1972), pp. 47-53 | DOI
[6] Thermoelasticity, J. Elasticity, Volume 2 (1972), pp. 1-7 | DOI
[7] A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, Volume 15 (1967), pp. 299-309 | DOI
[8] Fractional-order elastic models of cartilage: A multi-scale approach, Commun. Nonlinear Sci. Numer. Simul., Volume 15 (2010), pp. 657-664 | Zbl | DOI
[9] Thermoviscoelastic waves in an infinite aeolotropic body with a cylindrical cavity–a study under the review of generalised theory of thermoelasticity, Computers & structures, Volume 52 (1994), pp. 705-717 | DOI | Zbl
[10] Magnetothermoelastic interaction in an infinite elastic continuum with a cylindrical hole subjected to ramp-type heating, Int. J. Eng. Sci., Volume 29 (1991), pp. 1505-1514 | DOI | Zbl
[11] The Coldness, a Universal Function in Thermo-Elastic Solids, Arch. Rat. Mech. Anal., Volume 41 (1971), pp. 319-332
[12] The Laplace transform: theory and applications, Springer Science & Business Media, New York, 2013
[13] Two-dimensional generalized thermoelasticity problem for an infinitely long cylinder, J. Thermal Stresses, Volume 17 (1994), pp. 213-227 | DOI
[14] Thermoelastic solids: Continuum Mechanics of Single-Substance Bodies, Elsevier, Volume 1975 (1975), pp. 173-265
[15] Macro-to microscale heat transfer: the lagging behavior, John Wiley & Sons, U.S.A., 2014
[16] Dependence of modulus of elasticity and thermal conductivity on reference temperature in generalized thermoelasticity for an infinite material with a spherical cavity , Appl. Math. Mech., Volume 26 (2005), pp. 470-475 | DOI | Zbl
[17] State-space approach on generalized thermoelasticity for an infinite material with a spherical cavity and variable thermal conductivity subjected to ramp-type heating , Can. Appl. Math. Q., Volume 13 (2005), pp. 369-390 | Zbl
[18] Theory of generalized thermoelasticity with fractional order strain , J. Vib. Control, Volume 22 (2016), pp. 3840-3857 | Zbl | DOI
Cité par Sources :