Mathematical model of generalized thermoelastic infinite medium with a spherical cavity and fractional order strain
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 1, p. 30-37.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, a new mathematical model of a thermoelastic isotropic unbounded medium contains a spherical cavity thermally shocked under generalized thermo-elasticity with the fractional order strain model. The governing system of the partial differential equations has been derived in Laplace transform domain, and the inversion was done numerically by using the sum of Riemann approximation techniques. The numerical outputs of the displacement, the temperature, the stress, and the strain have been obtained and presented graphically. The fractional order parameter has an essential consequence on the stress, the strain, and the displacement distributions while its effect on the temperature increment distribution is very limited.
DOI : 10.22436/jnsa.012.01.03
Classification : 74B20, 74F05, 35R11, 65R10
Keywords: Generalized thermo-elasticity, spherical cavity, fractional calculus, fractional strain

Al-Lehaibi, Eman A. N. 1

1 Mathematics Department, College of Science and Arts-Sharoura, Najran University, KSA
@article{JNSA_2019_12_1_a2,
     author = { Al-Lehaibi, Eman A. N.},
     title = {Mathematical model of generalized thermoelastic infinite medium with a spherical cavity and fractional order strain},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {30-37},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2019},
     doi = {10.22436/jnsa.012.01.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.03/}
}
TY  - JOUR
AU  -  Al-Lehaibi, Eman A. N.
TI  - Mathematical model of generalized thermoelastic infinite medium with a spherical cavity and fractional order strain
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 30
EP  - 37
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.03/
DO  - 10.22436/jnsa.012.01.03
LA  - en
ID  - JNSA_2019_12_1_a2
ER  - 
%0 Journal Article
%A  Al-Lehaibi, Eman A. N.
%T Mathematical model of generalized thermoelastic infinite medium with a spherical cavity and fractional order strain
%J Journal of nonlinear sciences and its applications
%D 2019
%P 30-37
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.03/
%R 10.22436/jnsa.012.01.03
%G en
%F JNSA_2019_12_1_a2
 Al-Lehaibi, Eman A. N. Mathematical model of generalized thermoelastic infinite medium with a spherical cavity and fractional order strain. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 1, p. 30-37. doi : 10.22436/jnsa.012.01.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.03/

[1] Al-Huniti, N. S.; Al-Nimr, M.; M. Naji Dynamic response of a rod due to a moving heat source under the hyperbolic heat conduction model , J. Sound Vib., Volume 242 (2001), pp. 629-640 | DOI

[2] Biot, M. A. Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., Volume 27 (1956), pp. 240-253 | DOI

[3] Erbay, S.; E. S. Suhubi Longitudinal wave propagation in a generalized thermoelastic cylinder, J. Therm. Stresses, Volume 9 (1986), pp. 279-295 | DOI

[4] Furukawa, T.; Noda, N.; F. Ashida Generalized thermoelasticity for an infinite body with a circular cylindrical hole, JSME Int. J. I-Solid M., Volume 33 (1990), pp. 26-32 | DOI

[5] Green, A. E.; Laws, N. On the entropy production inequality, Arch. Rational Mech. Anal., Volume 45 (1972), pp. 47-53 | DOI

[6] Green, A. E.; K. A. Lindsay Thermoelasticity, J. Elasticity, Volume 2 (1972), pp. 1-7 | DOI

[7] Lord, H. W.; Shulman, Y. A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, Volume 15 (1967), pp. 299-309 | DOI

[8] Magin, R. L.; T. J. Royston Fractional-order elastic models of cartilage: A multi-scale approach, Commun. Nonlinear Sci. Numer. Simul., Volume 15 (2010), pp. 657-664 | Zbl | DOI

[9] Misra, J. C.; Chattopadhyay, N. C.; S. C. Samanta Thermoviscoelastic waves in an infinite aeolotropic body with a cylindrical cavity–a study under the review of generalised theory of thermoelasticity, Computers & structures, Volume 52 (1994), pp. 705-717 | DOI | Zbl

[10] Misra, J. C.; Samanta, S. C.; Chakrabarti, A. K.; Misra, S. C. Magnetothermoelastic interaction in an infinite elastic continuum with a cylindrical hole subjected to ramp-type heating, Int. J. Eng. Sci., Volume 29 (1991), pp. 1505-1514 | DOI | Zbl

[11] I. Mller The Coldness, a Universal Function in Thermo-Elastic Solids, Arch. Rat. Mech. Anal., Volume 41 (1971), pp. 319-332

[12] J. L. Schiff The Laplace transform: theory and applications, Springer Science & Business Media, New York, 2013

[13] Sherief, H. H.; Anwar, M. N. Two-dimensional generalized thermoelasticity problem for an infinitely long cylinder, J. Thermal Stresses, Volume 17 (1994), pp. 213-227 | DOI

[14] E. S. Suhubi Thermoelastic solids: Continuum Mechanics of Single-Substance Bodies, Elsevier, Volume 1975 (1975), pp. 173-265

[15] Tzou, D. Y. Macro-to microscale heat transfer: the lagging behavior, John Wiley & Sons, U.S.A., 2014

[16] H. M. Youssef Dependence of modulus of elasticity and thermal conductivity on reference temperature in generalized thermoelasticity for an infinite material with a spherical cavity , Appl. Math. Mech., Volume 26 (2005), pp. 470-475 | DOI | Zbl

[17] H. M. Youssef State-space approach on generalized thermoelasticity for an infinite material with a spherical cavity and variable thermal conductivity subjected to ramp-type heating , Can. Appl. Math. Q., Volume 13 (2005), pp. 369-390 | Zbl

[18] H. M. Youssef Theory of generalized thermoelasticity with fractional order strain , J. Vib. Control, Volume 22 (2016), pp. 3840-3857 | Zbl | DOI

Cité par Sources :