An efficient iterative algorithm for finding a nontrivial symmetric solution of the Yang-Baxter-like matrix equation
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 1, p. 21-29.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper presents an efficient iterative method to obtain a nontrivial symmetric solution of the Yang-Baxter-like matrix equation $AXA=XAX $. Necessary conditions for the convergence of the propounded iterative method are derived. Finally, three numerical examples to illustrate the efficiency of the proposed method and the preciseness of our theoretical results are provided.
DOI : 10.22436/jnsa.012.01.02
Classification : 15A24, 65F10, 65H10
Keywords: Yang-Baxter matrix equation, iterative method, nontrivial solution, Newton's method

Chacha, Chacha Stephen  1 ; Kim, Hyun-Min  2

1 Mathematics department, Mkwawa University College of Education, (A constituent College of the University of Dar es salaam), P. O. Box 2513, Iringa, Tanzania
2 Mathematics department, Pusan National University, Busan, 46241, Republic of Korea
@article{JNSA_2019_12_1_a1,
     author = {Chacha, Chacha Stephen  and Kim, Hyun-Min },
     title = {An efficient iterative algorithm for finding a  nontrivial symmetric solution of the {Yang-Baxter-like} matrix equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {21-29},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2019},
     doi = {10.22436/jnsa.012.01.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.02/}
}
TY  - JOUR
AU  - Chacha, Chacha Stephen 
AU  - Kim, Hyun-Min 
TI  - An efficient iterative algorithm for finding a  nontrivial symmetric solution of the Yang-Baxter-like matrix equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 21
EP  - 29
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.02/
DO  - 10.22436/jnsa.012.01.02
LA  - en
ID  - JNSA_2019_12_1_a1
ER  - 
%0 Journal Article
%A Chacha, Chacha Stephen 
%A Kim, Hyun-Min 
%T An efficient iterative algorithm for finding a  nontrivial symmetric solution of the Yang-Baxter-like matrix equation
%J Journal of nonlinear sciences and its applications
%D 2019
%P 21-29
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.02/
%R 10.22436/jnsa.012.01.02
%G en
%F JNSA_2019_12_1_a1
Chacha, Chacha Stephen ; Kim, Hyun-Min . An efficient iterative algorithm for finding a  nontrivial symmetric solution of the Yang-Baxter-like matrix equation. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 1, p. 21-29. doi : 10.22436/jnsa.012.01.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.02/

[1] Bachiller, D.; Cedó, F. A family of solutions of the Yang-Baxter equation, J. Algebra, Volume 412 (2014), pp. 218-229 | DOI

[2] Baxter, R. J. Partition function of the eight–vertex lattice model, Ann. Physics, Volume 70 (1972), pp. 193-228 | DOI

[3] Cedó, F.; Jespers, E.; Okniski, J. Retractability of set theoretic solutions of the Yang-Baxter equation , Adv. Math., Volume 224 (2010), pp. 2472-2484 | Zbl | DOI

[4] Ding, J.; Rhee, N. H. A nontrivial solution to a stochastic matrix equation, East Asian J. Appl. Math., Volume 2 (2012), pp. 277-284 | Zbl | DOI

[5] Ding, J.; N. H. Rhee Computing solutions of the Yang-Baxter-like matrix equation for diagonalisable matrices, East Asian J. Appl. Math., Volume 5 (2015), pp. 75-84 | DOI | Zbl

[6] Ding, J.; Rhee, N. H. Spectral solutions of the Yang–Baxter matrix equation , J. Math. Anal. Appl., Volume 402 (2013), pp. 567-573 | DOI

[7] Ding, J.; H. Tian Solving the YangBaxter–like matrix equation for a class of elementary matrices, Comput. Math. Appl., Volume 72 (2016), pp. 1541-1548 | DOI

[8] Ding, J.; Zhang, C. On the structure of the spectral solutions of the Yang–Baxter matrix equation , Appl. Math. Lett., Volume 35 (2014), pp. 86-89 | Zbl | DOI

[9] Ding, J.; Zhang, C.; Rhee, N. H. Further solutions of a Yang-Baxter–like matrix equation, East Asian J. Appl. Math., Volume 2 (2013), pp. 352-362 | DOI | Zbl

[10] Ding, J.; Zhang, C.; Rhee, N. H. Commuting solutions of the Yang-Baxter matrix equation, Appl. Math. Lett., Volume 44 (2015), pp. 1-4 | DOI

[11] Ding, J.; Zhou, A. Eigenvalues of rank-one updated matrices with some applications, Appl. Math. Lett., Volume 20 (2007), pp. 1223-1226 | Zbl | DOI

[12] Dong, Q.; Ding, J. Complete commuting solutions of the Yang-Baxter-like matrix equation for diagonalizable matrices, Comput. Math. Appl., Volume 72 (2016), pp. 194-201 | DOI

[13] F. Felix Nonlinear Equations, Quantum Groups and Duality Theorems: A Primer on the Yang-Baxter Equation , VDM Verlag, Germany, 2009

[14] Gateva–Ivanova, T. Quadratic algebras, Yang-Baxter equation, and Artin–Schelter regularity, Adv. Math., Volume 230 (2012), pp. 2153-2175 | Zbl | DOI

[15] J. Hietarinta All solutions to the constant quantum Yang-Baxter equation in two dimensions, Phys. Lett. A, Volume 165 (1992), pp. 245-251 | DOI

[16] Jimbo, M. Yang-Baxter Equation in Integrable Systems , World Scientific Publishing Co., Teaneck, 1989

[17] Kulish, P. P.; E. K. Sklyanin Solutions of the Yang-Baxter equation, in: Yang-Baxter Equation in Integrable Systems, Adv. Series in Math. Phys., Volume 10 (1990), pp. 172-198 | DOI

[18] Mansour, S. I. A.; Ding, J.; Q. L. Huang Explicit solutions of the Yang–Baxter–like matrix equation for an idempotent matrix, Appl. Math. Lett., Volume 63 (2017), pp. 71-76 | DOI | Zbl

[19] Tian, H. All solutions of the Yang–Baxter–like matrix equation for rank-one matrices , Appl. Math. Lett., Volume 51 (2016), pp. 55-59 | Zbl | DOI

[20] Yang, C. N. Some exact results for the many–body problem in one dimension with repulsive delta–function interaction, Phys. Rev. Lett., Volume 19 (1967), pp. 1312-1315 | Zbl | DOI

[21] Yang, C.; M. Ge Braid Group, Knot Theory, and Statistical Mechanics, World Scientific Publishing Co., Teaneck, 1989

Cité par Sources :