Voir la notice de l'article provenant de la source International Scientific Research Publications
Chacha, Chacha Stephen  1 ; Kim, Hyun-Min  2
@article{JNSA_2019_12_1_a1, author = {Chacha, Chacha Stephen and Kim, Hyun-Min }, title = {An efficient iterative algorithm for finding a nontrivial symmetric solution of the {Yang-Baxter-like} matrix equation}, journal = {Journal of nonlinear sciences and its applications}, pages = {21-29}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2019}, doi = {10.22436/jnsa.012.01.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.02/} }
TY - JOUR AU - Chacha, Chacha Stephen AU - Kim, Hyun-Min TI - An efficient iterative algorithm for finding a nontrivial symmetric solution of the Yang-Baxter-like matrix equation JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 21 EP - 29 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.02/ DO - 10.22436/jnsa.012.01.02 LA - en ID - JNSA_2019_12_1_a1 ER -
%0 Journal Article %A Chacha, Chacha Stephen %A Kim, Hyun-Min %T An efficient iterative algorithm for finding a nontrivial symmetric solution of the Yang-Baxter-like matrix equation %J Journal of nonlinear sciences and its applications %D 2019 %P 21-29 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.02/ %R 10.22436/jnsa.012.01.02 %G en %F JNSA_2019_12_1_a1
Chacha, Chacha Stephen ; Kim, Hyun-Min . An efficient iterative algorithm for finding a nontrivial symmetric solution of the Yang-Baxter-like matrix equation. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 1, p. 21-29. doi : 10.22436/jnsa.012.01.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.02/
[1] A family of solutions of the Yang-Baxter equation, J. Algebra, Volume 412 (2014), pp. 218-229 | DOI
[2] Partition function of the eight–vertex lattice model, Ann. Physics, Volume 70 (1972), pp. 193-228 | DOI
[3] Retractability of set theoretic solutions of the Yang-Baxter equation , Adv. Math., Volume 224 (2010), pp. 2472-2484 | Zbl | DOI
[4] A nontrivial solution to a stochastic matrix equation, East Asian J. Appl. Math., Volume 2 (2012), pp. 277-284 | Zbl | DOI
[5] Computing solutions of the Yang-Baxter-like matrix equation for diagonalisable matrices, East Asian J. Appl. Math., Volume 5 (2015), pp. 75-84 | DOI | Zbl
[6] Spectral solutions of the Yang–Baxter matrix equation , J. Math. Anal. Appl., Volume 402 (2013), pp. 567-573 | DOI
[7] Solving the YangBaxter–like matrix equation for a class of elementary matrices, Comput. Math. Appl., Volume 72 (2016), pp. 1541-1548 | DOI
[8] On the structure of the spectral solutions of the Yang–Baxter matrix equation , Appl. Math. Lett., Volume 35 (2014), pp. 86-89 | Zbl | DOI
[9] Further solutions of a Yang-Baxter–like matrix equation, East Asian J. Appl. Math., Volume 2 (2013), pp. 352-362 | DOI | Zbl
[10] Commuting solutions of the Yang-Baxter matrix equation, Appl. Math. Lett., Volume 44 (2015), pp. 1-4 | DOI
[11] Eigenvalues of rank-one updated matrices with some applications, Appl. Math. Lett., Volume 20 (2007), pp. 1223-1226 | Zbl | DOI
[12] Complete commuting solutions of the Yang-Baxter-like matrix equation for diagonalizable matrices, Comput. Math. Appl., Volume 72 (2016), pp. 194-201 | DOI
[13] Nonlinear Equations, Quantum Groups and Duality Theorems: A Primer on the Yang-Baxter Equation , VDM Verlag, Germany, 2009
[14] Quadratic algebras, Yang-Baxter equation, and Artin–Schelter regularity, Adv. Math., Volume 230 (2012), pp. 2153-2175 | Zbl | DOI
[15] All solutions to the constant quantum Yang-Baxter equation in two dimensions, Phys. Lett. A, Volume 165 (1992), pp. 245-251 | DOI
[16] Yang-Baxter Equation in Integrable Systems , World Scientific Publishing Co., Teaneck, 1989
[17] Solutions of the Yang-Baxter equation, in: Yang-Baxter Equation in Integrable Systems, Adv. Series in Math. Phys., Volume 10 (1990), pp. 172-198 | DOI
[18] Explicit solutions of the Yang–Baxter–like matrix equation for an idempotent matrix, Appl. Math. Lett., Volume 63 (2017), pp. 71-76 | DOI | Zbl
[19] All solutions of the Yang–Baxter–like matrix equation for rank-one matrices , Appl. Math. Lett., Volume 51 (2016), pp. 55-59 | Zbl | DOI
[20] Some exact results for the many–body problem in one dimension with repulsive delta–function interaction, Phys. Rev. Lett., Volume 19 (1967), pp. 1312-1315 | Zbl | DOI
[21] Braid Group, Knot Theory, and Statistical Mechanics, World Scientific Publishing Co., Teaneck, 1989
Cité par Sources :