Voir la notice de l'article provenant de la source International Scientific Research Publications
Elbatal, I.  1 ; Ahmad, Zubair  2 ; Elgarhy, M.  3 ; Almarashi, Abdullah M.  4
@article{JNSA_2019_12_1_a0, author = {Elbatal, I. and Ahmad, Zubair and Elgarhy, M. and Almarashi, Abdullah M. }, title = {A new alpha power transformed family of distributions: properties and applications to the {Weibull} model}, journal = {Journal of nonlinear sciences and its applications}, pages = {1-20}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2019}, doi = {10.22436/jnsa.012.01.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.01/} }
TY - JOUR AU - Elbatal, I. AU - Ahmad, Zubair AU - Elgarhy, M. AU - Almarashi, Abdullah M. TI - A new alpha power transformed family of distributions: properties and applications to the Weibull model JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 1 EP - 20 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.01/ DO - 10.22436/jnsa.012.01.01 LA - en ID - JNSA_2019_12_1_a0 ER -
%0 Journal Article %A Elbatal, I. %A Ahmad, Zubair %A Elgarhy, M. %A Almarashi, Abdullah M. %T A new alpha power transformed family of distributions: properties and applications to the Weibull model %J Journal of nonlinear sciences and its applications %D 2019 %P 1-20 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.01/ %R 10.22436/jnsa.012.01.01 %G en %F JNSA_2019_12_1_a0
Elbatal, I. ; Ahmad, Zubair ; Elgarhy, M. ; Almarashi, Abdullah M. . A new alpha power transformed family of distributions: properties and applications to the Weibull model. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 1, p. 1-20. doi : 10.22436/jnsa.012.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.01/
[1] Flexible Weibull Extended Distribution, MAYFEB J. Materials Sci., Volume 2 (2017), pp. 5-18
[2] A new muth generated family of distributions with applications, J. Nonlinear Sci. Appl., Volume 11 (2018), pp. 1171-1184
[3] The Weibull–G family of probability distributions, J. Data Sci., Volume 12 (2014), pp. 53-68
[4] Cumulative frequency functions, Ann. Math. Statistics, Volume 13 (1942), pp. 215-232 | Zbl | DOI
[5] A new family of generalized distributions, J. Stat. Comput. Simul., Volume 81 (2011), pp. 883-893 | DOI
[6] The Kumaraswamy Weibull distribution with application to failure data , J. Franklin Inst., Volume 347 (2010), pp. 1399-1429 | Zbl | DOI
[7] A New Extension of Weibull Distribution with Application to Lifetime Data, Annals Data Sci., Volume 4 (2017), pp. 31-61 | DOI
[8] A new exponentiated extended family of distributions with Applications, Gazi University J. Sci., Volume 30 (2017), pp. 101-115
[9] Garhy-generated family of distributions with application, Math. Theory Model., Volume 6 (2016), pp. 1-15
[10] The beta-normal distribution and its applications, Comm. Statist. Theory Methods, Volume 31 (2002), pp. 497-512 | DOI
[11] The odd Frchet-G family of probability distributions, J. Stat. Appl. Prob., Volume 7 (2018), pp. 185-201
[12] A New family of exponentiated Weibull-generated distributions, Int. J. Math. Appl., Volume 4 (2016), pp. 135-148
[13] Kumaraswamy Weibull-generated family of distributions with applications, Adv. Appl. Stat., Volume 48 (2016), pp. 205-239 | DOI | Zbl
[14] Type II half Logistic family of distributions with applications, Pak. J. Stat. Oper. Res., Volume 13 (2017), pp. 245-264
[15] Survey of developments in the theory of continuous skewed distributions, Metron, Volume 63 (2005), pp. 225-261
[16] A modified Weibull distribution , IEEE Trans. Reliab., Volume 52 (2003), pp. 33-47 | DOI
[17] A new method for generating distributions with an application to exponential distribution, Comm. Statist. Theory Methods, Volume 46 (2017), pp. 6543-6557 | DOI | Zbl
[18] A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, Volume 84 (1997), pp. 641-652 | Zbl | DOI
[19] Exponentiated Weibull family for analyzing bathtub failure rate data, IEEE Trans. Reliab., Volume 42 (1993), pp. 299-302 | Zbl | DOI
[20] Strength modeling using Weibull distributions, J. Mech. Sci. Tech., Volume 22 (2008), pp. 1247-1254 | DOI
[21] On size-biased sampling and related form-invariant weighted distributions, Sankhya, Ser. B, Volume 38 (1976), pp. 48-61 | Zbl
[22] The weighted distributions: a survey of their applications, In Applications of Statistics, P. R. Krishnaiah (ed.), 383–405, North Holland Publishing Company, Amesterdam, 1977 | Zbl
[23] Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material, Philos. Trans. R. Soc. Lond. A, Volume 186 (1895), pp. 343-414
[24] Marshall–Olkin gamma–Weibull distribution with applications, Comm. Statist. Theory Methods, Volume 45 (2016), pp. 1550-1563 | Zbl | DOI
Cité par Sources :