A new alpha power transformed family of distributions: properties and applications to the Weibull model
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 1, p. 1-20.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this article, a new technique of alpha-power transformation is used to propose a new class of lifetime distributions. Four special models of the new family are presented. Some mathematical properties of the proposed model including estimation of the unknown parameters using the method of maximum likelihood are discussed. For the illustrative purposes of the new proposal, a three-parameter special model of this class, namely, new alpha-power transformed Weibull distribution is considered in detail. The proposed distribution offers greater distributional flexibility and is able to model data with increasing, decreasing, and constant or more importantly with bathtub-shaped failure rates. Type-1 and Type-II censoring estimation are discussed. A simulation study based on complete sample of the new model is also carried out. Finally, the usefulness and efficiency of the new proposal is illustrated by analyzing two real data sets.
DOI : 10.22436/jnsa.012.01.01
Classification : 60E05, 62E10, 62N05
Keywords: Alpha- power transformation, Weibull distribution, type-I and type-II censoring, bathtub shape, moment generating function, maximum likelihood estimation

Elbatal, I.  1 ; Ahmad, Zubair  2 ; Elgarhy, M.  3 ; Almarashi, Abdullah M.  4

1 Department of Mathematics and Statistics, College of Science, Al Imam Mohammad Ibn Saud Islamic University, (IMSIU), Saudi Arabia
2 Department of Statistics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan
3 Vice Presidency for Graduate Studies and Scientific Research, University of Jeddah, Jeddah, KSA
4 Statistics Department, Faculty of Science, King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia
@article{JNSA_2019_12_1_a0,
     author = {Elbatal, I.  and Ahmad, Zubair  and Elgarhy, M.  and Almarashi, Abdullah  M. },
     title = {A new alpha power transformed family of distributions: properties and applications to the {Weibull} model},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1-20},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2019},
     doi = {10.22436/jnsa.012.01.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.01/}
}
TY  - JOUR
AU  - Elbatal, I. 
AU  - Ahmad, Zubair 
AU  - Elgarhy, M. 
AU  - Almarashi, Abdullah  M. 
TI  - A new alpha power transformed family of distributions: properties and applications to the Weibull model
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 1
EP  - 20
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.01/
DO  - 10.22436/jnsa.012.01.01
LA  - en
ID  - JNSA_2019_12_1_a0
ER  - 
%0 Journal Article
%A Elbatal, I. 
%A Ahmad, Zubair 
%A Elgarhy, M. 
%A Almarashi, Abdullah  M. 
%T A new alpha power transformed family of distributions: properties and applications to the Weibull model
%J Journal of nonlinear sciences and its applications
%D 2019
%P 1-20
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.01/
%R 10.22436/jnsa.012.01.01
%G en
%F JNSA_2019_12_1_a0
Elbatal, I. ; Ahmad, Zubair ; Elgarhy, M. ; Almarashi, Abdullah  M. . A new alpha power transformed family of distributions: properties and applications to the Weibull model. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 1, p. 1-20. doi : 10.22436/jnsa.012.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.01.01/

[1] Ahmad, Z.; Z. Hussain Flexible Weibull Extended Distribution, MAYFEB J. Materials Sci., Volume 2 (2017), pp. 5-18

[2] Almarashi, A. M.; Elgarhy, M. A new muth generated family of distributions with applications, J. Nonlinear Sci. Appl., Volume 11 (2018), pp. 1171-1184

[3] Bourguignon, M.; Silva, R. B.; Cordeiro, G. M. The Weibull–G family of probability distributions, J. Data Sci., Volume 12 (2014), pp. 53-68

[4] I. W. Burr Cumulative frequency functions, Ann. Math. Statistics, Volume 13 (1942), pp. 215-232 | Zbl | DOI

[5] Cordeiro, G. M.; M. de Castro A new family of generalized distributions, J. Stat. Comput. Simul., Volume 81 (2011), pp. 883-893 | DOI

[6] Cordeiro, G. M.; Ortega, E. M. M.; S. Nadarajah The Kumaraswamy Weibull distribution with application to failure data , J. Franklin Inst., Volume 347 (2010), pp. 1399-1429 | Zbl | DOI

[7] Dey, S.; Sharma, V. K.; Mesfioui, M. A New Extension of Weibull Distribution with Application to Lifetime Data, Annals Data Sci., Volume 4 (2017), pp. 31-61 | DOI

[8] Elgarhy, M.; Haq, M.; Ozel, G.; Arslan, N. A new exponentiated extended family of distributions with Applications, Gazi University J. Sci., Volume 30 (2017), pp. 101-115

[9] Elgarhy, M.; Hassan, A. S.; Rashed, M. Garhy-generated family of distributions with application, Math. Theory Model., Volume 6 (2016), pp. 1-15

[10] Eugene, N.; Lee, C.; Famoye, F. The beta-normal distribution and its applications, Comm. Statist. Theory Methods, Volume 31 (2002), pp. 497-512 | DOI

[11] Haq, M.; Elgarhy, M. The odd Frchet-G family of probability distributions, J. Stat. Appl. Prob., Volume 7 (2018), pp. 185-201

[12] Hassan, A. S.; M. Elgarhy A New family of exponentiated Weibull-generated distributions, Int. J. Math. Appl., Volume 4 (2016), pp. 135-148

[13] Hassan, A. S.; Elgarhy, M. Kumaraswamy Weibull-generated family of distributions with applications, Adv. Appl. Stat., Volume 48 (2016), pp. 205-239 | DOI | Zbl

[14] Hassan, A. S.; Elgarhy, M.; Shakil, M. Type II half Logistic family of distributions with applications, Pak. J. Stat. Oper. Res., Volume 13 (2017), pp. 245-264

[15] Kotz, S.; D. Vicari Survey of developments in the theory of continuous skewed distributions, Metron, Volume 63 (2005), pp. 225-261

[16] Lai, C. D.; Xie, M.; D. N. P. Murthy A modified Weibull distribution , IEEE Trans. Reliab., Volume 52 (2003), pp. 33-47 | DOI

[17] Mahdavi, A.; Kundu, D. A new method for generating distributions with an application to exponential distribution, Comm. Statist. Theory Methods, Volume 46 (2017), pp. 6543-6557 | DOI | Zbl

[18] Marshall, A. W.; Olkin, I. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, Volume 84 (1997), pp. 641-652 | Zbl | DOI

[19] Mudholkar, G. S.; D. K. Srivastava Exponentiated Weibull family for analyzing bathtub failure rate data, IEEE Trans. Reliab., Volume 42 (1993), pp. 299-302 | Zbl | DOI

[20] Nadarajah, S.; Kotz, S. Strength modeling using Weibull distributions, J. Mech. Sci. Tech., Volume 22 (2008), pp. 1247-1254 | DOI

[21] Patil, G. P.; Ord, J. K. On size-biased sampling and related form-invariant weighted distributions, Sankhya, Ser. B, Volume 38 (1976), pp. 48-61 | Zbl

[22] Patil, G. P.; Rao, C. R. The weighted distributions: a survey of their applications, In Applications of Statistics, P. R. Krishnaiah (ed.), 383–405, North Holland Publishing Company, Amesterdam, 1977 | Zbl

[23] Pearson, K. Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material, Philos. Trans. R. Soc. Lond. A, Volume 186 (1895), pp. 343-414

[24] Saboor, A.; Pogany, T. K. Marshall–Olkin gamma–Weibull distribution with applications, Comm. Statist. Theory Methods, Volume 45 (2016), pp. 1550-1563 | Zbl | DOI

Cité par Sources :