The implicit midpoint rule of nonexpansive mappings and applications in uniformly smooth Banach spaces
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 12, p. 1374-1391.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Let $K$ be a nonempty closed convex subset of a Banach space $E$ and $T: K\rightarrow K$ be a nonexpansive mapping. Using a viscosity approximation method, we study the implicit midpoint rule of a nonexpansive mapping $T.$ We establish a strong convergence theorem for an iterative algorithm in the framework of uniformly smooth Banach spaces and apply our result to obtain the solutions of an accretive mapping and a variational inequality problem. The numerical example which compares the rates of convergence shows that the iterative algorithm is the most efficient. Our result is unique and the method of proof is of independent interest.
DOI : 10.22436/jnsa.011.12.08
Classification : 47H06, 47J05, 47J25, 47H10, 47H17
Keywords: Viscosity technique, implicit midpoint rule, nonexpansive, accretive, variational inequality problem

Aibinu, M. O.  1 ; Pillay, P.  2 ; Olaleru, J. O.  3 ; Mewomo, O. T.  2

1 School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal , Durban, South Africa;DST-NRF Center of Excellence in Mathematical and Statistical Sciences (CoE-MaSS), South Africa
2 School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
3 Department of Mathematics, Faculty of Science, University of Lagos, Akoka, Yaba, Lagos, Nigeria
@article{JNSA_2018_11_12_a7,
     author = {Aibinu, M. O.  and Pillay, P.  and Olaleru, J. O.  and Mewomo, O. T. },
     title = {The implicit midpoint rule of nonexpansive mappings and applications in uniformly smooth {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1374-1391},
     publisher = {mathdoc},
     volume = {11},
     number = {12},
     year = {2018},
     doi = {10.22436/jnsa.011.12.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.08/}
}
TY  - JOUR
AU  - Aibinu, M. O. 
AU  - Pillay, P. 
AU  - Olaleru, J. O. 
AU  - Mewomo, O. T. 
TI  - The implicit midpoint rule of nonexpansive mappings and applications in uniformly smooth Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1374
EP  - 1391
VL  - 11
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.08/
DO  - 10.22436/jnsa.011.12.08
LA  - en
ID  - JNSA_2018_11_12_a7
ER  - 
%0 Journal Article
%A Aibinu, M. O. 
%A Pillay, P. 
%A Olaleru, J. O. 
%A Mewomo, O. T. 
%T The implicit midpoint rule of nonexpansive mappings and applications in uniformly smooth Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1374-1391
%V 11
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.08/
%R 10.22436/jnsa.011.12.08
%G en
%F JNSA_2018_11_12_a7
Aibinu, M. O. ; Pillay, P. ; Olaleru, J. O. ; Mewomo, O. T. . The implicit midpoint rule of nonexpansive mappings and applications in uniformly smooth Banach spaces. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 12, p. 1374-1391. doi : 10.22436/jnsa.011.12.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.08/

[1] Aibinu, M. O.; Mewomo, O. T. Algorithm for Zeros of monotone maps in Banach spaces, Proceedings of Southern Africa Mathematical Sciences Association (SAMSA2016) Annual Conference, Volume 2017 (2017), pp. 35-44

[2] Aibinu, M. O.; Mewomo, O. T. Strong convergence theorems for strongly monotone mappings in Banach spaces, to appear in Boletim da Sociedade Paranaense de Matemática (Accepted)

[3] Alghamdi, M. A.; Shahzad, N.; Xu, H.-K. The implicit midpoint rule for nonexpansive mappings, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-9 | DOI

[4] Aoyama, K.; Kimura, Y.; Takahashi, W.; Toyoda, M. Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal., Volume 67 (2007), pp. 2350-2360 | DOI

[5] Auzinger, W.; Frank, R. Asymptotic error expansions for stiff equations: an analysis for the implicit midpoint and trapezoidal rules in the strongly stiff case, Numer. Math., Volume 56 (1989), pp. 469-499 | Zbl | DOI

[6] Bader, G.; Deuflhard, P. A semi-implicit mid-point rule for stiff systems of ordinary differential equations, Numer. Math., Volume 41 (1983), pp. 373-398 | DOI | Zbl

[7] Chidume, C. E.; Mutangandura, S. A. An example on the Mann iteration method for Lipscitz pseudocontractions, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 2359-2363 | DOI

[8] Cioranescu, I. Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic, Dordrecht , 1990 | DOI | Zbl

[9] B. Halpern Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 957-961

[10] Hrabalova, J.; Tomasek, P. On stability regions of the modified midpoint method for a linear delay differential equation, Adv. Differ. Equ., Volume 2013 (2013), pp. 1-10 | Zbl | DOI

[11] Hu, L.-G.; Wang, J.-P. Mann iteration of weak convergence theorems in Banach space, Acta Math. Appl. Sin. Engl. Ser., Volume 25 (2009), pp. 217-224 | DOI

[12] Imnang, S.; S. Suantai Strong convergence of a viscosity iterative algorithm in Banach spaces with applications, Appl. Math. Sci., Volume 10 (2016), pp. 2589-2609

[13] Jung, J. S. Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., Volume 302 (2005), pp. 509-520 | DOI | Zbl

[14] Katchang, P.; Kumam, P. Convergence of iterative algorithm for finding common solution of fixed points and general system of variational inequalities for two accretive operators, Thai J. Math., Volume 9 (2011), pp. 343-360 | Zbl

[15] Luo, P.; Cai, G.; Shehu, Y. The viscosity iterative algorithms for the implicit midpoint rule of nonexpansive mappings in uniformly smooth Banach spaces, J. Inequal. Appl., Volume 2017 (2017), pp. 1-12 | DOI | Zbl

[16] A. Moudafi Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55 | DOI

[17] Nandal, A.; Chugh, R. A new strong convergence Theorem for Lipschitzian strongly pseudocontractive Mappings in a real Banach space, Int. J. Math. Tren. Tech., Volume 41 (2017), pp. 205-209 | DOI

[18] Qin, X. L. Y.; Cho, J.; Kang, S. M.; Zhou, H. Y. Convergence of a modified Halpern-type iteration algorithm for quasi- - nonexpansive mappings, Appl. Math. Lett., Volume 22 (2009), pp. 1051-1055 | DOI

[19] Qiu, L.-H.; S.-S. Yao Strong convergence theorems of nonself nonexpansive mapping in Banach spaces, Appl. Math. Sci., Volume 5 (2011), pp. 2781-2788

[20] Reich, S. Approximating fixed points of nonexpansive mappings, Panamer. Math. J., Volume 4 (1994), pp. 23-28

[21] Shioji, N.; W. Takahashi Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc., Volume 125 (1997), pp. 3641-3645 | DOI | Zbl

[22] Somalia, S. Implicit midpoint rule to the nonlinear degenerate boundary value problems, Int. J. Comput. Math., Volume 79 (2002), pp. 327-332 | Zbl | DOI

[23] Suzuki, T. Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., Volume 2005 (2005), pp. 103-123 | Zbl | DOI

[24] W. Takahashi Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000

[25] Wang, Z. M.; Su, Y. F.; Wang, D. X.; Dong, Y. C. A modified Halpern-type iteration algorithm for a family of hemi-relatively nonexpansive mappings and systems of equilibrium problems in Banach spaces, J. Comput. Appl. Math., Volume 235 (2011), pp. 2364-2371 | Zbl | DOI

[26] Wong, N. C.; Sahu, D. R.; Yao, J. C. Solving variational inequalities involving nonexpansive type mappings, Nonlinear Anal., Volume 69 (2008), pp. 4732-4753 | DOI

[27] Xu, H.-K. Iterative algorithms for nonlinear operators, J. London Math. Soc. , Volume (2), 66 (2002), pp. 240-256 | DOI

[28] Xu, H.-K. Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., Volume 298 (2004), pp. 279-291 | DOI

[29] Xu, H.-K.; Alghamdi, M. A.; Shahzad, N. The viscosity technique for the implicit midpoint rule of nonexpansive mappings in Hilbert spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-12 | Zbl | DOI

[30] Yao, Y. H.; Shahzad, N.; Liou, Y.-C. Modified semi-implicit midpoint rule for nonexpansive mappings, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-15 | Zbl | DOI

Cité par Sources :