Global existence and blow-up behavior for a degenerate and singular parabolic equation with nonlocal boundary condition
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 12, p. 1363-1373.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The aim of this article is to investigate the global existence and blow-up behavior of the nonnegative solution to a degenerate and singular parabolic equation with nonlocal boundary condition. The conditions on the existence and non-existence of the global solution are given. Furthermore, under some appropriate hypotheses, the precise blow-up rate estimate and the uniform blow-up profile of the blow-up solutions are discussed.
DOI : 10.22436/jnsa.011.12.07
Classification : 35K50, 35K55, 35K65
Keywords: Degenerate and singular parabolic equation, global existence, blow-up, blow-up rate, uniform blow-up profile

Liu, Dengming  1

1 School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
@article{JNSA_2018_11_12_a6,
     author = {Liu, Dengming },
     title = {Global existence and blow-up behavior for a degenerate and singular parabolic equation with  nonlocal boundary condition},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1363-1373},
     publisher = {mathdoc},
     volume = {11},
     number = {12},
     year = {2018},
     doi = {10.22436/jnsa.011.12.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.07/}
}
TY  - JOUR
AU  - Liu, Dengming 
TI  - Global existence and blow-up behavior for a degenerate and singular parabolic equation with  nonlocal boundary condition
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1363
EP  - 1373
VL  - 11
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.07/
DO  - 10.22436/jnsa.011.12.07
LA  - en
ID  - JNSA_2018_11_12_a6
ER  - 
%0 Journal Article
%A Liu, Dengming 
%T Global existence and blow-up behavior for a degenerate and singular parabolic equation with  nonlocal boundary condition
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1363-1373
%V 11
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.07/
%R 10.22436/jnsa.011.12.07
%G en
%F JNSA_2018_11_12_a6
Liu, Dengming . Global existence and blow-up behavior for a degenerate and singular parabolic equation with  nonlocal boundary condition. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 12, p. 1363-1373. doi : 10.22436/jnsa.011.12.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.07/

[1] Budd, C.; Galaktionov, V. A.; J. Chen Focusing blow-up for quasilinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, Volume 128 (1998), pp. 965-992 | DOI

[2] Chan, C. Y.; Chen, C. S. A numerical method for semilinear singular parabolic quenching problem, Quart. Appl. Math., Volume 47 (1989), pp. 45-57 | DOI

[3] Chen, Y. P.; Lin, Q. L.; Xie, C. H. The blow-up properties for a degenerate semilinear parabolic equation with nonlocal source, Appl. Math. J. Chinese Unvi. Ser. B, Volume 17 (2002), pp. 413-424 | Zbl

[4] Chen, Y. P.; Liu, L. H. The blow-up profile for a nonlocal nonlinear parabolic equation with a nonlocal boundary condition, Quart. Appl. Math., Volume 70 (2012), pp. 759-772 | DOI

[5] Chen, Y. P.; Liu, Q. L.; Xie, C. H. Blow-up for degenerate parabolic equation with nonlocal source, Proc. Amer. Math. Soc., Volume 132 (2003), pp. 135-145 | DOI

[6] Deng, K. Comparison principle for some nonlocal problems, Quart. Appl. Math., Volume 50 (1992), pp. 517-522 | DOI

[7] Friedman, A.; McLeod, B. Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., Volume 34 (1985), pp. 425-447 | DOI

[8] Gao, Y. Z.; Gao, W. J. Existence and blow-up of solutions for a porous medium equation with nonlocal boundary condition, Appl. Anal., Volume 90 (2011), pp. 799-809 | DOI

[9] Gladkov, A.; Guedda, M. Blow-up problem for semilinear heat equation with absorption and a nonlocal boundary condition, Nonlinear Anal., Volume 74 (2011), pp. 4573-4580 | Zbl | DOI

[10] Gladkov, A.; Guedda, M. Semilinear heat equation with absorption and a nonlocal boundary condition, Appl. Anal., Volume 91 (2012), pp. 2267-2276 | Zbl | DOI

[11] Gladkov, A.; Nikitin, A. I. On the existence of global solutions of a system of semilinear parabolic equations with nonlinear nonlocal boundary conditions, Differ. Equ., Volume 52 (2016), pp. 467-482 | DOI | Zbl

[12] Liang, F. Global existence and blow-up for a degenerate reaction-diffusion system with nonlinear localized sources and nonlocal boundary conditions, J. Korean Math. Soc., Volume 53 (2016), pp. 27-43 | Zbl | DOI

[13] Lin, Z. G.; Liu, Y. R. Uniform blowup profiles for diffusion equations with nonlocal source and nonlocal boundary, Acta Math. Sci. Ser. B (Engl. Ed.), Volume 24 (2004), pp. 443-450 | DOI

[14] Liu, D. M. Blow-up for a degenerate and singular parabolic equation with nonlocal boundary condition, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 208-218 | Zbl

[15] Liu, D. M.; J. Ma Blowup singularity for a degenerate and singular parabolic equation with nonlocal boundary, J. Comput. Anal. Appl., Volume 23 (2017), pp. 833-846

[16] Mclachlan, N. W. Bessel Functions For Engineers, Clarendon Press, Oxford, 1955

[17] Mu, C. L.; Liu, D. M.; Y. S. Mi Blow-up for a degenerate parabolic equation with nonlocal source and nonlocal boundary, Appl. Anal., Volume 90 (2011), pp. 1373-1389 | DOI

[18] P. Souplet Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source, J. Differential Equations, Volume 153 (1999), pp. 374-406 | Zbl | DOI

[19] Yan, L.; Song, X. J.; Mu, C. L. Global existence and blow-up for weakly coupled degenerate and singular equations with nonlocal sources, Appl. Anal., Volume 94 (2015), pp. 1624-1648 | DOI

[20] Zhou, J. Global existence and blowup for a degenerate and singular parabolic system with nonlocal source and absorptions, Z. Angew. Math. Phys., Volume 65 (2014), pp. 449-469 | Zbl

[21] Zhou, J.; Mu, C. L. Blowup for a degenerate and singular parabolic equation with non-local source and absorption, Glasg. Math. J., Volume 52 (2010), pp. 209-225 | DOI | Zbl

[22] Zhou, J.; Yang, D. Blowup for a degenerate and singular parabolic equation with nonlocal source and nonlocal boundary, Appl. Math. Comput., Volume 256 (2015), pp. 881-884 | Zbl | DOI

Cité par Sources :