Voir la notice de l'article provenant de la source International Scientific Research Publications
Zerizer, Tahia  1
@article{JNSA_2018_11_12_a5, author = {Zerizer, Tahia }, title = {Nonlinear perturbed difference equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {1355-1362}, publisher = {mathdoc}, volume = {11}, number = {12}, year = {2018}, doi = {10.22436/jnsa.011.12.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.06/} }
TY - JOUR AU - Zerizer, Tahia TI - Nonlinear perturbed difference equations JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1355 EP - 1362 VL - 11 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.06/ DO - 10.22436/jnsa.011.12.06 LA - en ID - JNSA_2018_11_12_a5 ER -
Zerizer, Tahia . Nonlinear perturbed difference equations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 12, p. 1355-1362. doi : 10.22436/jnsa.011.12.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.06/
[1] Singular Perturbations for Difference Equations, Rocky Mountain J. Math., Volume 6 (1976), pp. 561-567 | Zbl | DOI
[2] Multitime methods for systems of difference equations, Studies in Appl. Math., Volume 56 (1977), pp. 273-289 | DOI
[3] Singular Perturbations for Systems of Difference Equations, Appl. Math. Lett., Volume 3 (1990), pp. 51-54 | DOI
[4] Singularly perturbed difference equations , J. Differ. Equations Appl., Volume 5 (1999), pp. 97-110 | DOI
[5] The Implicit Function Theorem: History, Theory, and Applications, Birkhäuser, Boston, 2003 | DOI | Zbl
[6] Generalization of the Formula of Faa Di Bruno for a Composite Function with a Vector Argument, Int. J. Math. Math. Sci., Volume 24 (2000), pp. 481-491 | Zbl
[7] Singular Perturbation Analysis of Discrete Control Systems, Springer-Verlag, Berlin, 1985 | DOI
[8] Solving systems of nonlinear difference equations by the multiple scales perturbation method, Nonlinear Dynam., Volume 69 (2012), pp. 1509-1516 | Zbl | DOI
[9] On asymptotic expansions in nonlinear, singularly perturbed difference equations, Numer. Funct. Anal. Optim., Volume 1 (1979), pp. 565-587 | DOI | Zbl
[10] Perturbations for Linear Difference Equations, J. Math. Anal. Appl., Volume 305 (2005), pp. 43-52 | DOI
[11] Singular perturbation for difference equations, Nonlinear Anal. Theory Methods Appl., Volume 47 (2001), pp. 4083-4093 | DOI
[12] On the multiple scales perturbation method for difference equations, Nonlinear Dynam., Volume 55 (2009), pp. 401-418
[13] Perturbation Method for Linear Difference Equations with Small Parameters, Adv. Differ. Equ., Volume 11 (2006), pp. 1-12 | DOI
[14] Perturbation Method for a Class of Singularly Perturbed Systems , Adv. Dyn. Syst. Appl., Volume 9 (2014), pp. 239-248
[15] Boundary Value Problems for Linear Singularly Perturbed Discrete Systems, Adv. Dyn. Syst. Appl., Volume 10 (2015), pp. 215-224
[16] Problems for a Linear Two-Time-Scale Discrete Model, Adv. Dyn. Syst. Appl., Volume 10 (2015), pp. 85-96
[17] Boundary Value Problem for a Three-Time-Scale Singularly Perturbed Discrete System , Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., Volume 23 (2016), pp. 263-272 | Zbl
[18] A Class of Multi-Scales Nonlinear Difference Equations, Appl. Math. Sci., Volume 12 (2018), pp. 911-919 | DOI
[19] A Class of Nonlinear Perturbed Difference Equations, Int. J. Math. Anal., Volume 12 (2018), pp. 235-243 | DOI
Cité par Sources :