Nonlinear perturbed difference equations
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 12, p. 1355-1362.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The paper reports on an iteration algorithm to compute asymptotic solutions at any order for a wide class of nonlinear singularly perturbed difference equations.
DOI : 10.22436/jnsa.011.12.06
Classification : 39A10
Keywords: Perturbed difference equations, computational methods, boundary value problem, asymptotic expansions, iterative method

Zerizer, Tahia  1

1 Mathematics Department, College of Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
@article{JNSA_2018_11_12_a5,
     author = {Zerizer, Tahia },
     title = {Nonlinear perturbed difference equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1355-1362},
     publisher = {mathdoc},
     volume = {11},
     number = {12},
     year = {2018},
     doi = {10.22436/jnsa.011.12.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.06/}
}
TY  - JOUR
AU  - Zerizer, Tahia 
TI  - Nonlinear perturbed difference equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1355
EP  - 1362
VL  - 11
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.06/
DO  - 10.22436/jnsa.011.12.06
LA  - en
ID  - JNSA_2018_11_12_a5
ER  - 
%0 Journal Article
%A Zerizer, Tahia 
%T Nonlinear perturbed difference equations
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1355-1362
%V 11
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.06/
%R 10.22436/jnsa.011.12.06
%G en
%F JNSA_2018_11_12_a5
Zerizer, Tahia . Nonlinear perturbed difference equations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 12, p. 1355-1362. doi : 10.22436/jnsa.011.12.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.06/

[1] Comstock, C.; Hsiao, G. C. Singular Perturbations for Difference Equations, Rocky Mountain J. Math., Volume 6 (1976), pp. 561-567 | Zbl | DOI

[2] Hoppensteadt, F. C.; Miranker, W. L. Multitime methods for systems of difference equations, Studies in Appl. Math., Volume 56 (1977), pp. 273-289 | DOI

[3] Jodar, L.; J. L. Morera Singular Perturbations for Systems of Difference Equations, Appl. Math. Lett., Volume 3 (1990), pp. 51-54 | DOI

[4] Kelley, W. G. Singularly perturbed difference equations , J. Differ. Equations Appl., Volume 5 (1999), pp. 97-110 | DOI

[5] Krantz, S. G.; Parks, H. R. The Implicit Function Theorem: History, Theory, and Applications, Birkhäuser, Boston, 2003 | DOI | Zbl

[6] Mishkov, R. L. Generalization of the Formula of Faa Di Bruno for a Composite Function with a Vector Argument, Int. J. Math. Math. Sci., Volume 24 (2000), pp. 481-491 | Zbl

[7] Naidu, D. S.; A. K. Rao Singular Perturbation Analysis of Discrete Control Systems, Springer-Verlag, Berlin, 1985 | DOI

[8] Rafei, M.; W. T. Van Horssen Solving systems of nonlinear difference equations by the multiple scales perturbation method, Nonlinear Dynam., Volume 69 (2012), pp. 1509-1516 | Zbl | DOI

[9] H. J. Reinhardt On asymptotic expansions in nonlinear, singularly perturbed difference equations, Numer. Funct. Anal. Optim., Volume 1 (1979), pp. 565-587 | DOI | Zbl

[10] Sari, T.; T. Zerizer Perturbations for Linear Difference Equations, J. Math. Anal. Appl., Volume 305 (2005), pp. 43-52 | DOI

[11] M. Suzuki Singular perturbation for difference equations, Nonlinear Anal. Theory Methods Appl., Volume 47 (2001), pp. 4083-4093 | DOI

[12] Horssen, W. T. Van; M. C. ter Brake On the multiple scales perturbation method for difference equations, Nonlinear Dynam., Volume 55 (2009), pp. 401-418

[13] Zerizer, T. Perturbation Method for Linear Difference Equations with Small Parameters, Adv. Differ. Equ., Volume 11 (2006), pp. 1-12 | DOI

[14] Zerizer, T. Perturbation Method for a Class of Singularly Perturbed Systems , Adv. Dyn. Syst. Appl., Volume 9 (2014), pp. 239-248

[15] Zerizer, T. Boundary Value Problems for Linear Singularly Perturbed Discrete Systems, Adv. Dyn. Syst. Appl., Volume 10 (2015), pp. 215-224

[16] T. Zerizer Problems for a Linear Two-Time-Scale Discrete Model, Adv. Dyn. Syst. Appl., Volume 10 (2015), pp. 85-96

[17] T. Zerizer Boundary Value Problem for a Three-Time-Scale Singularly Perturbed Discrete System , Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., Volume 23 (2016), pp. 263-272 | Zbl

[18] Zerizer, T. A Class of Multi-Scales Nonlinear Difference Equations, Appl. Math. Sci., Volume 12 (2018), pp. 911-919 | DOI

[19] Zerizer, T. A Class of Nonlinear Perturbed Difference Equations, Int. J. Math. Anal., Volume 12 (2018), pp. 235-243 | DOI

Cité par Sources :