Using differentiation matrices for pseudospectral method solve Duffing Oscillator
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 12, p. 1331-1336.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This article presents an approximate numerical solution for nonlinear Duffing Oscillators by pseudospectral (PS) method to compare boundary conditions on the interval [-1, 1]. In the PS method, we have been used differentiation matrix for Chebyshev points to calculate numerical results for nonlinear Duffing Oscillators. The results of the comparison show that this solution had the high degree of accuracy and very small errors. The software used for the calculations in this study was Mathematica V.10.4.
DOI : 10.22436/jnsa.011.12.04
Classification : 34B15, 41A50, 65L10
Keywords: Duffing oscillator, pseudospectral methods, differential matrix, Duffing system, Chebyshev points

Nhat, L. A.  1

1 PhD student of, RUDN University, Moscow 117198, Russia;Lecture at Tan, Trao University, Tuyen Quang province, Vietnam
@article{JNSA_2018_11_12_a3,
     author = {Nhat, L.  A. },
     title = {Using differentiation matrices for pseudospectral method solve {Duffing} {Oscillator}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1331-1336},
     publisher = {mathdoc},
     volume = {11},
     number = {12},
     year = {2018},
     doi = {10.22436/jnsa.011.12.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.04/}
}
TY  - JOUR
AU  - Nhat, L.  A. 
TI  - Using differentiation matrices for pseudospectral method solve Duffing Oscillator
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1331
EP  - 1336
VL  - 11
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.04/
DO  - 10.22436/jnsa.011.12.04
LA  - en
ID  - JNSA_2018_11_12_a3
ER  - 
%0 Journal Article
%A Nhat, L.  A. 
%T Using differentiation matrices for pseudospectral method solve Duffing Oscillator
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1331-1336
%V 11
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.04/
%R 10.22436/jnsa.011.12.04
%G en
%F JNSA_2018_11_12_a3
Nhat, L.  A. . Using differentiation matrices for pseudospectral method solve Duffing Oscillator. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 12, p. 1331-1336. doi : 10.22436/jnsa.011.12.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.04/

[1] Al-Jawary, M. A.; Abd-Al-Razaq, S. G. Analytic and numerical solution for duffing equations, Int. J. Basic Appl. Sci. , Volume 5 (2016), pp. 115-119

[2] Bulbul, B.; Sezer, M. Numerical Solution of Duffing Equation by Using an Improved Taylor Matrix Method, J. Appl. Math., Volume 2013 (2013), pp. 1-6 | Zbl

[3] Don, W. S.; Solomonoff, A. Accuracy and speed in computing the Chebyshev collocation derivative, SIAM J. Sci. Comput., Volume 16 (1995), pp. 1253-1268 | Zbl | DOI

[4] Elias-Ziga, A.; Martnez-Romero, O.; Crdoba-Daz, R. K. Approximate Solution for the Duffing–Harmonic Oscillator by the Enhanced Cubication Method, Math. Probl. Eng., Volume 2012 (2012), pp. 1-12 | Zbl

[5] El-Nady, A. O.; Lashin, M. M. A. Approximate Solution of Nonlinear Duffing Oscillator Using Taylor Expansion, J. Mech. Engi. Auto., Volume 6 (2016), pp. 110-116 | DOI

[6] El-Naggar, A. M.; G. M. Ismail Analytical solution of strongly nonlinear Duffing Oscillators, Alex. Engi. Jour., Volume 55 (2016), pp. 1581-1585 | DOI

[7] Enns, R. H.; McGuire, G. C. Nonlinear Physics with Mathematica for Scientists and Engineers, Birkhauser Basel, Boston, 2001 | Zbl | DOI

[8] Gorji-Bandpy, M.; Azimi, M. A.; M. M. Mostofi Analytical methods to a generalized Duffing oscillator, Australian J. Basic Appl. Sci., Volume 5 (2011), pp. 788-796

[9] Hosen, M. A.; Chowdhury, M. S. H.; Ali, M. Y.; Ismail, A. F. An analytical approximation technique for the duffing oscillator based on the energy balance method , Ital. J. Pure Appl. Math., Volume 37 (2017), pp. 455-466 | Zbl

[10] Lin, H.-Y.; Yen, C.-C.; Jen, K.-C.; Jea, K. C. A Postverification Method for Solving Forced Duffing Oscillator Problems without Prescribed Periods, J. Appl. Math., Volume 2014 (2014), pp. 1-10

[11] Mason, J. C.; Handscomb, D. C. Chebyshev Polynomials, Chapman & Hall/CRC, Boca Raton, FL, 2003

[12] Nourazar, S.; Mirzabeigy, A. Approximate solution for nonlinear Duffing oscillator with damping effect using the modified differential transform method, Scientia Iranica, Volume 20 (2013), pp. 364-368 | DOI

[13] Pinelli, A.; Benocci, C.; M. Deville A Chebyshev collocation algorithm for the solution of advection–diffusion equations, Comput. Methods Appl. Mech. Engrg., Volume 116 (1994), pp. 201-210 | DOI | Zbl

[14] Razzaghi, M.; G. Elnagar Numerical solution of the controlled Duffing oscillator by the pseudospectral method, J. Comput. Appl. Math., Volume 56 (1994), pp. 253-261 | DOI | Zbl

[15] Saadatmandi, A.; F. Mashhadi-Fini A pseudospectral method for nonlinear Duffing equation involving both integral and nonintegral forcing terms, Math. Methods Appl. Sci., Volume 38 (2015), pp. 1265-1272 | DOI

[16] Salas, A. H.; H., J. E. Castillo Exact Solution to Duffing Equation and the Pendulum Equation, Appl. Math. Sci., Volume 8 (2014), pp. 8781-8789

Cité par Sources :