Voir la notice de l'article provenant de la source International Scientific Research Publications
Wang, Yanmei  1 ; Liu, Guirong  2 ; Zhao, Aimin  2
@article{JNSA_2018_11_12_a2, author = {Wang, Yanmei and Liu, Guirong and Zhao, Aimin }, title = {Traveling waves for a diffusive {SIR} model with delay and nonlinear incidence}, journal = {Journal of nonlinear sciences and its applications}, pages = {1313-1330}, publisher = {mathdoc}, volume = {11}, number = {12}, year = {2018}, doi = {10.22436/jnsa.011.12.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.03/} }
TY - JOUR AU - Wang, Yanmei AU - Liu, Guirong AU - Zhao, Aimin TI - Traveling waves for a diffusive SIR model with delay and nonlinear incidence JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1313 EP - 1330 VL - 11 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.03/ DO - 10.22436/jnsa.011.12.03 LA - en ID - JNSA_2018_11_12_a2 ER -
%0 Journal Article %A Wang, Yanmei %A Liu, Guirong %A Zhao, Aimin %T Traveling waves for a diffusive SIR model with delay and nonlinear incidence %J Journal of nonlinear sciences and its applications %D 2018 %P 1313-1330 %V 11 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.03/ %R 10.22436/jnsa.011.12.03 %G en %F JNSA_2018_11_12_a2
Wang, Yanmei ; Liu, Guirong ; Zhao, Aimin . Traveling waves for a diffusive SIR model with delay and nonlinear incidence. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 12, p. 1313-1330. doi : 10.22436/jnsa.011.12.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.03/
[1] Traveling waves in a delayed SIR epidemic model with nonlinear incidence, Appl. Math. Comput., Volume 263 (2015), pp. 221-232 | Zbl | DOI
[2] Global asymptotic stability of an SIR epidemic model with distributed time delay , Nonlinear Anal., Volume 47 (2001), pp. 4107-4115 | DOI | Zbl
[3] Spatial dynamics of a nonlocal and time-delayed reaction diffusion system, J. Differential Equations, Volume 245 (2008), pp. 2749-2770 | DOI
[4] Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., Volume 435 (2016), pp. 20-37 | Zbl | DOI
[5] Traveling waves for a simple diffusive epidemic model , Math. Models Methods Appl. Sci., Volume 5 (1995), pp. 935-966 | DOI | Zbl
[6] Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., Volume 72 (2010), pp. 1192-1207 | Zbl | DOI
[7] A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London Ser. A, Volume 115 (1927), pp. 700-721
[8] Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., Volume 69 (2007), pp. 1871-1886 | Zbl | DOI
[9] Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. Math. Biol., Volume 68 (2006), pp. 615-626 | DOI | Zbl
[10] Non-linear incidence and stability of infectious disease models, Math. Med. Biol., Volume 22 (2005), pp. 113-128 | DOI
[11] Permanence of an SIR epidemic model with distributed time delays, Tohoku Math. J., Volume 54 (2002), pp. 581-591 | DOI | Zbl
[12] Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differential Equations, Volume 188 (2003), pp. 135-163 | DOI
[13] The effect of incidence functions on the dynamics of a quarantine/isolation model with time delay, Nonlinear Anal. Real World Appl., Volume 12 (2011), pp. 215-235 | DOI | Zbl
[14] Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal. Ser. A: Theory Methods, Volume 42 (2000), pp. 931-947 | DOI | Zbl
[15] Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differential Equations, Volume 229 (2006), pp. 270-296 | Zbl | DOI
[16] Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model, Discrete Contin. Dyn. Syst. Ser. B, Volume 15 (2011), pp. 867-892 | Zbl
[17] Traveling waves in a Kermack-Mckendrick epidemic model with diffusion and latent period, Nonlinear Anal., Volume 111 (2014), pp. 66-81 | DOI | Zbl
[18] Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Anal. Real World Appl., Volume 10 (2009), pp. 3175-3189 | DOI | Zbl
Cité par Sources :