Traveling waves for a diffusive SIR model with delay and nonlinear incidence
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 12, p. 1313-1330.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper is concerned with the existence and non-existence of traveling wave solutions for a diffusive SIR model with delay and nonlinear incidence. First, we construct a pair of upper and lower solutions and a bounded cone. Then we prove the existence of traveling wave by using Schauder's fixed point theorem and constructing a suitable Lyapunov functional. The nonexistence of traveling wave is obtained by two-sided Laplace transform. Moreover, numerical simulations support the theoretical results. Finally, we also obtain that the minimal wave speed is decreasing with respect to the latent period and increasing with respect to the diffusion rate of infected individuals.
DOI : 10.22436/jnsa.011.12.03
Classification : 35K57, 35C07, 92D30
Keywords: SIR model, traveling wave, time delay, nonlinear incidence

Wang, Yanmei  1 ; Liu, Guirong  2 ; Zhao, Aimin  2

1 School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China;School of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan, Shanxi 030006, China
2 School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China
@article{JNSA_2018_11_12_a2,
     author = {Wang, Yanmei  and Liu, Guirong  and Zhao, Aimin },
     title = {Traveling waves for a diffusive {SIR} model with delay and nonlinear incidence},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1313-1330},
     publisher = {mathdoc},
     volume = {11},
     number = {12},
     year = {2018},
     doi = {10.22436/jnsa.011.12.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.03/}
}
TY  - JOUR
AU  - Wang, Yanmei 
AU  - Liu, Guirong 
AU  - Zhao, Aimin 
TI  - Traveling waves for a diffusive SIR model with delay and nonlinear incidence
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1313
EP  - 1330
VL  - 11
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.03/
DO  - 10.22436/jnsa.011.12.03
LA  - en
ID  - JNSA_2018_11_12_a2
ER  - 
%0 Journal Article
%A Wang, Yanmei 
%A Liu, Guirong 
%A Zhao, Aimin 
%T Traveling waves for a diffusive SIR model with delay and nonlinear incidence
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1313-1330
%V 11
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.03/
%R 10.22436/jnsa.011.12.03
%G en
%F JNSA_2018_11_12_a2
Wang, Yanmei ; Liu, Guirong ; Zhao, Aimin . Traveling waves for a diffusive SIR model with delay and nonlinear incidence. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 12, p. 1313-1330. doi : 10.22436/jnsa.011.12.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.12.03/

[1] Bai, Z. G.; Wu, S.-L. Traveling waves in a delayed SIR epidemic model with nonlinear incidence, Appl. Math. Comput., Volume 263 (2015), pp. 221-232 | Zbl | DOI

[2] Beretta, E.; Hara, T.; Ma, W.; Y. Takeuchi Global asymptotic stability of an SIR epidemic model with distributed time delay , Nonlinear Anal., Volume 47 (2001), pp. 4107-4115 | DOI | Zbl

[3] Fang, J.; Wei, J. J.; Zhao, X.-Q. Spatial dynamics of a nonlocal and time-delayed reaction diffusion system, J. Differential Equations, Volume 245 (2008), pp. 2749-2770 | DOI

[4] S.-C. Fu Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., Volume 435 (2016), pp. 20-37 | Zbl | DOI

[5] Hosono, Y.; Ilyas, B. Traveling waves for a simple diffusive epidemic model , Math. Models Methods Appl. Sci., Volume 5 (1995), pp. 935-966 | DOI | Zbl

[6] Huang, G.; Takeuchi, Y.; Ma, W.; Wei, D. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., Volume 72 (2010), pp. 1192-1207 | Zbl | DOI

[7] Kermack, W. O.; Mckendrick, A. G. A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London Ser. A, Volume 115 (1927), pp. 700-721

[8] A. Korobeinikov Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., Volume 69 (2007), pp. 1871-1886 | Zbl | DOI

[9] A. Korobeinikov Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. Math. Biol., Volume 68 (2006), pp. 615-626 | DOI | Zbl

[10] Korobeinikov, A.; P. K. Maini Non-linear incidence and stability of infectious disease models, Math. Med. Biol., Volume 22 (2005), pp. 113-128 | DOI

[11] Ma, W.; Takeuchi, Y.; Hara, T.; Beretta, E. Permanence of an SIR epidemic model with distributed time delays, Tohoku Math. J., Volume 54 (2002), pp. 581-591 | DOI | Zbl

[12] Ruan, S. G.; Wang, W. D. Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differential Equations, Volume 188 (2003), pp. 135-163 | DOI

[13] Safi, M. A.; Gumel, A. B. The effect of incidence functions on the dynamics of a quarantine/isolation model with time delay, Nonlinear Anal. Real World Appl., Volume 12 (2011), pp. 215-235 | DOI | Zbl

[14] Takeuchi, Y.; Ma, W.; E. Beretta Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal. Ser. A: Theory Methods, Volume 42 (2000), pp. 931-947 | DOI | Zbl

[15] Weng, P. X.; Zhao, X.-Q. Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differential Equations, Volume 229 (2006), pp. 270-296 | Zbl | DOI

[16] Wu, C. F.; Weng, P. X. Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model, Discrete Contin. Dyn. Syst. Ser. B, Volume 15 (2011), pp. 867-892 | Zbl

[17] Xu, Z. Traveling waves in a Kermack-Mckendrick epidemic model with diffusion and latent period, Nonlinear Anal., Volume 111 (2014), pp. 66-81 | DOI | Zbl

[18] Xu, R.; Ma, Z. Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Anal. Real World Appl., Volume 10 (2009), pp. 3175-3189 | DOI | Zbl

Cité par Sources :